Skip to main content

Chemical Changes in Wood Components and Cotton Cellulose as a Result of Brown Rot: Is Fenton Chemistry Involved?

  • Chapter

Part of the book series: Biodeterioration Research ((BIOR,volume 4))

Abstract

The most destructive form of wood decay, brown rot, is caused by a relatively small number of species of Hvmenomycetous basidiomvcetes. These basidiomycetes are unique among cellulose destroyers because they are the only known microbes that can degrade the cellulose in wood without first removing the lignin (Cowling, 1961; Liese, 1970). Brown-rot fungi leave a brown residue—hence their name—that has been partially o-demethylated (Kirk, 1975). Furthermore, brown-rot fungi degrade cellulose in an unusual manner that differs from that of other cellulolytic organisms. Hyphae of these ubiquitous fungi invade wood cells and bring about a rapid depolymerization of the cellulose with low losses in total wood substance (Cowling, 1961; Kayama, 1962b). The average number of glucosyl residues per cellulose molecule (degree of polymerization, DP) is thereby reduced from about 104 (Goring and Timell, 1962) to about 200 (Cowling, 1961). The resulting fragments correspond to the size of the cellulose “crystallites.” This effect is thought to be brought about by cleavages within the amorphous regions of the cellulose that separate the crystallites (Cowling, 1961). Similar depolymerization of cellulose to the “limit DP” (to the crystallites) is effected by acid hydrolysis (Battista, 1950) and by chemical oxidants (Koenigs, 1972a, 1974a,b, 1975; Highley, 1977; Kirk et al., 1991). As a result of the initial attack by brown-rot fungi and the depolymerization of the cellulose, wood strength collapses. How this rapid depolymerization occurs is a perplexing biochemical question: as Cowling and Brown (1969) recognized over two decades ago, even the smallest cellulases (approximate diameter 25 _, length 140 _) are too large to penetrate the pores of wood (median pore diameter approximately 10 _; maximum 35–100 J. Also, cellulases do not mimic the action of brown-rot fungi in generating cellulose crystallites (Chang et al., 1981; Phillip et al., 1981). Our own examination of the change in pore structure of wood as it is decayed by a brown-rot fungus suggests that the depolymerizing agent is between 12 and 38 in diameter (Flournoy, 1991; Flournoy et al., 1991).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akamatsu, Y., Ohta, A., Takahashi, M., and Shimada, M. (1991). Enzymatic formation of oxalate from oxaloacetate with cell-free extracts of the brown-rot fungus Tvromyces palustris in relation to the biodegradation of cellulose. Mokuzai Gakkaishi, 37 (6), 575–577.

    CAS  Google Scholar 

  • Ander, P., Eriksson, K.E., and Yu, H.S. (1984). Metabolism of lignin-derived aromatic acids by wood-rotting fungi. J. Gen. Microbiol., 130, 63–68.

    CAS  Google Scholar 

  • Battista, O.A. (1950). Hydrolysis and crystallization of cellulose. Ind. Eng. Chem., 42, 502–507.

    Article  CAS  Google Scholar 

  • Bottu, G. (1991). The effect of buffers and chelators on the reaction of liminol with Fenton’s reagent near neutral pH. J. Biolumin. Chemilumin., 6, 147–151.

    Article  CAS  Google Scholar 

  • Bray, M.W. and Andrews, T.M. (1924). Chemical changes of groundwood during decay. Ind. Enq. Chem., 16, 137–139.

    Article  Google Scholar 

  • Brown, W., Cowling, E.B. and Falkehag, S.I. (1968). Molecular size distributions of lignins liberated enzymatically from wood. Svensk Papoerstidn., 71, 811–821.

    CAS  Google Scholar 

  • Chandhoke, V., Jellison, J., Goodell, B., and Fekete, F. (1991). Action of siderophores from Gloeophyllum trabeum on 2-keto-4-thiomethylbutyric acid and cellulose azure substrates. Phytopathologv, 81 (1), 121.

    Google Scholar 

  • Chang, M.M., Chou, T.Y.C., and Tsao, G.T. (1981). Structure, pretreatment and hydrolysis of cellulose. pp. 15–42, In: Advances in Biochemical Engineering.(A. Ziechter, ed.), Springer-Verlag, Berlin.

    Google Scholar 

  • Cobb, C.E. (1981). The nonenzymatic decomposition of cellulose by the brown-rot fungus Gloeophyllum trabeum. M.S. Thesis, Michigan Technological University.

    Google Scholar 

  • Cowling, E.B. (1961). Comparative biochemistry of the decay of sweetgum sapwood by white-rot and brown-rot fungi. Tech. Bull. No. 1258, U.S. Department of Agriculture, Washington, D.C. 79 pp.

    Google Scholar 

  • Cowling, E.B. and Brown, W. (1969). Structural features of cellulosic materials in relation to enzymatic hydrolysis. In Cellulases and Their Applications. pp. 152–187. (R.F. Gould, ed.), American Chemical Society Advances in Chemistry Series 95, Washington, D.C.

    Google Scholar 

  • Daruwalla, E.H., Kangle, P.J., and Nabar, G.M. (1960). Acid hydrolysis of chemically modified celluloses. Text. Res. J., 30, 469–471.

    Article  CAS  Google Scholar 

  • Davidson, G.F. (1934). The dissolution of chemically modified cotton cellulose in alkaline solutions. Part I—In solutions of sodium hydroxide, particularly at temperatures below the normal. J. Textile Inst., 25, T174–T196.

    Article  CAS  Google Scholar 

  • Davidson, G.F. (1936). The molecular structure of cellulose. Part I. A review of current theories. Part II. The evidence of the chemically modified cotton celluloses. J. Textile Inst., 27, P144–P168.

    Article  CAS  Google Scholar 

  • Davidson, G.F. (1940). The modification of cellulose by oxidants. J. Soc. Dyers and Colourists, 56, 58–63.

    Article  CAS  Google Scholar 

  • Belder, A.N., Lindberg, B., and Theander, O. (1963). The oxidation of glycosides XIII. The oxidation of methyl b-D-glucopyranoside with fenton’s reagent. Acta. Chem. Scand. 17, 1012–1014.

    Article  Google Scholar 

  • Dolphin, D., Nakano, T., Maione, T.E., Kirk, T.K., and Farrell, R. (1987). Synthetic model ligninases. pp.157–162. In: Lignin enzymatic and microbial degradation: Symposium International; 1987 April 23–24; Paris: Institut Natioanl De La Recherche Agronomique.

    Google Scholar 

  • Enoki, A., Takahashi, M., Tanaka, H., and Fuse, G. (1985). Degradation of lignin-related compounds and wood components by white-rot and brown-rot fungi. Mokuzai Gakkaishi, 31 (5), 397–408.

    CAS  Google Scholar 

  • Enoki, A., Tana H., and Fuse, G. (1988). Degradation of lignin related compounds, pure cellulose, and wood components by white-rot and brown-rot fungi. Holzforschunq, 42, 85–93.

    Article  CAS  Google Scholar 

  • Enoki, A., Tanaka, H., and Fuse, G. (1989). Relationship between degradation of wood and production of H202-producing one-electron oxidases by brown-rot fungi. Wood Sci. Technol., 23, 1–12.

    Article  CAS  Google Scholar 

  • Enoki, A., Yoshioka, S., Tanaka, H., and Fuse, G. (1990). Extracellular H202-producing and one-electron oxidation system of brown-rot fungi. The International Research Group on Wood Preservation, Document No. IRG/WP/1445, IRG Secretariat, Box 5607, S-114 86 Stockholm, Sweden.

    Google Scholar 

  • Enoki, A., Fuse, G., and Tanaka, H. (1991). Extracellular H202-producing and H2O2-reducing compounds of wood decay fungi. The International Research Group on Wood Preservation, Document No. IRG/WP/1516, IRG Secretariat, Box 5607, S-114 86 Stockholm, Sweden.

    Google Scholar 

  • Eriksson, K.-E. L., Blanchette, R.A., and Ander, P. (1990). Microbial and Enzymatic Degradation of Wood and Wood Components, Springer-Verlag, Berlin, p. 122.

    Book  Google Scholar 

  • Fekete, F.A., Chandhoke, V., and Jellison, J. (1989). Iron-binding compounds produced by wood-decaying basidiomycetes. Appl. Environ. Microbiol., 55 (10), 2720–2722.

    CAS  Google Scholar 

  • Ferm, R. and Cowling, E.B. (1972). A new procedure for analysis of phenol-oxidizing enzymes in wood-destroying fungi. Svensk Papperstidning, 75, 767–772.

    CAS  Google Scholar 

  • Flournoy, D.S. (1991). Changes in pore structure and cell wall volume in wood decayed by brown-and white-rot fungi. The International Research Group on Wood Preservation IRG Document No. IRG/WP/1501, IRG Secretariat, Box 5607, S-114 86 Stockholm, Sweden.

    Google Scholar 

  • Flournoy, D.S., Kirk, T.K., and Highley, T.L. (1991). Wood decay by brown-rot fungi: Changes in pore structure and cell wall volume. Holzforschunq, 45 (5), 383–388.

    Article  CAS  Google Scholar 

  • Gold, M.H., Kutsuki, H., and Morganm, M.A. (1983). Oxidative degradation of lignin by photochemical and chemical radical generating systems. Photochem. Photobiol., 38 (6), 647–651.

    Article  CAS  Google Scholar 

  • Goring, D.A.I. and Timell, T.E. (1962). Molecular weight of native celluloses. TAPPI, 45, 454–460.

    CAS  Google Scholar 

  • Habe, T., Shimada, M., and Higuchi, T. (1985). Biomimetic approach to lignin degradation. I. H202-dependent C-C bond cleavage of the lignin model compounds with a natural iron porphyrin and imidazole complex. Mokuzai Gakkaishi, 31 (1), 54–55.

    CAS  Google Scholar 

  • Haider, K. and Trojanowski, T. (1980). A comparison of the degradation of 14C-labeled DHP and corn stalk lignins by micro-and macrofungi and bacteria. In: Lignin Biodegradation: Microbiology, Chemistry and Potential Applications. pp.111–134.(Kirk, T.K., Huguchi, T, Chang, H.-M., eds.), Vol 1, Boca Raton, FL, CRC Press.

    Google Scholar 

  • Hall, P.L. (1980). Enzymatic transformations of lignin. 2. Enzyme Microb. Technol., 2, 170–176.

    Article  CAS  Google Scholar 

  • Halliwell, G. (1965). Catalytic decomposition of cellulose under biological conditions. Biochem. J., 95, 35–40.

    CAS  Google Scholar 

  • Halliwell, G. (1978). Superoxide-dependent formation of hydroxyl radicals in the presence of iron chelates. Is it a mechanism for hydroxyl radical production in biochemical systems? FEBS Lett., 92 (2), 321–326.

    Article  CAS  Google Scholar 

  • Halliwell, B. and Gutteridge, J.M.C. (1988). Iron as a biological pro-oxidant. ISI Atlas of Sci.: Bloch., 1, 48–52.

    Google Scholar 

  • Herr, D., Baumer, F., and Dellweg, H. (1978). Purification and properties of an extracellular endo-1,4-b-glucanase from Lenzites trabea. Arch. Microbiol., 117, 287–292.

    Article  CAS  Google Scholar 

  • Highley, T.L. (1975). Properties of cellulases of two brown-rot fungi and two white-rot fungi. Wood and Fib., 6 (4), 275–281.

    CAS  Google Scholar 

  • Highley, T.L. (1977). Requirements for cellulose degradation by a brown-rot fungus. Mat. and Orq., 12, 25–36.

    Google Scholar 

  • Highley, T.L. (1981). Catalase-aminotriazole assay—an invalid method for measurement of hydrogen peroxide by wood-decay fungi. ADDI. Environ. Microbiol., 42, 925–927.

    CAS  Google Scholar 

  • Highley, T.L. (1982). Is extracellular hydrogen peroxide involved in cellulose degradation by brown-rot fungi? Mater. and Orq., 17 (3), 205–214.

    CAS  Google Scholar 

  • Highley, T.L. (1987). Effect of carbohydrate and nitrogen on hydrogen peroxide formation by wood decay fungi in solid medium. FEMS Microbiology Letters, 48, 373–377.

    Article  CAS  Google Scholar 

  • Highley, T.L. and Murmanis, L.L. (1985a). Involvement of hydrogen peroxide in wood decay by brown-rot and white-rot fungi. The International Research Group on Wood Preservation, IRG Document No. IRG/WP/1256, IRG Secretariat, Box 5607, S-114 86 Stockholm, Sweden.

    Google Scholar 

  • Highley, T.L. and Murmanis, L.L. (1985b). Determination of hydrogen peroxide production in Coriolus versicolor and Poria placenta during wood degradation. Mater. and Org., 20 (4), 241–252.

    CAS  Google Scholar 

  • Highley, T.L. and Wolter, K.E. (1982). Properties of a carbohydrate-degrading enzyme complex from the brown-rot fungus Poria placenta. Mater. and Org., 17 (2), 127–134.

    CAS  Google Scholar 

  • Highley, T.L., Wolter, K.E., and Evans, F.J. (1981). Polysaccharide-degrading complex produced in wood and in liquid media by the brown-rot fungus Poria placenta. Wood and Fib., 13 (4), 265–274.

    CAS  Google Scholar 

  • Highley, T.L., Ibach, R., and Kirk, T.K. (1988). Properties of cellulose degraded by the brown-rot fungus, Postia placenta. The International Research Group pn Wood Preservation, IRG Document No. IRG/WP/1350, IRG Secretariat, Box 5607, S-114 86 Stockholm, Sweden.

    Google Scholar 

  • Highley, T.L., Kirk, T.K., and lbach, R. (1989). Effects of brown-rot fungi on cellulose. In: Biodeterioration Research II. pp. 511–525 (C.E. O’Rear and G.C. Llewellyn, eds.), General biodeterioration, degradation, mycotoxins, biotoxins, and wood decay. Proceedings, 2d meeting, Pan American Biodeterioration Society: 1989 July 28–31; Washington D.C., Plenum Press, N.Y.

    Google Scholar 

  • Illman, B.L., Meinholtz, D.C., and Highley, T.L. (1989). Oxygen free radical detection in wood colonized by the brown-rot fungus, Postia placenta.In: Biodeterioration Research II. General biodeterioration, degradation, mycotoxins, biotoxins, and wood decay., pp. 497–509,.(C.E. O’Rear and G.C. Llewellyn, eds.), Proc., 2d meeting, Pan American Biodeterioration Society: 1989 July 28–31; Washington, DC, Plenum Press, N.Y.

    Google Scholar 

  • Ivanov, V.I., Kaverzneva, E.D., and Kuznetsova, Z.I. (1953). Chemical changes produced in the cellulose macromolecule by oxidizing agents. Communication 8. Chemical changes in cellulose produced by oxidation with hydrogen peroxide. Div. Chem. Sci. Acad. Sci. USSR Bull. (Engl. Transl.), 2, 341–350.

    Article  Google Scholar 

  • Jellison, J., Goodell, B., Fekete, F., and Chandhoke, V. (1990). Fungal siderophores and their role in wood biodegradation. The International Research Group on Wood Preservation, Document No. IRG/WP/1442, IRG Secretariat, Box 5607, S-114 86 Stockholm, Sweden.

    Google Scholar 

  • Jellison, J., Chandhoke, V., Goodell, B., and Fekete, F. (1991). The action of siderophores isolated from Gloeophvllum trabeum on the structure and crystallinity of cellulose compounds. The International Research Group on Wood Preservation, Document No. IRG/WP/1479, IRG Secretariat, Box 5607, S-114 86 Stockholm, Sweden.

    Google Scholar 

  • Jin, L., Schultz T.P., and Nicholas, D.D. (1990a). Structural characterization of brown-rotted lignin. Holzforschung, 44 (2), 133–138.

    Article  Google Scholar 

  • Jin, L., Nicholas, D.D., and Kirk, T.K. (1990b). Mineralization of the methoxyl carbon of isolated lignin by brown-rot fungi under solid substate conditions. Wood Sci. Techol., 24 (3), 277–288.

    Article  Google Scholar 

  • Kayama, T. (1961). Chemical studies on decayed wood. I. The chemical composition of decayed wood and some properties of resultant pulps. Mokuzai Gakkaishi, 7 (3), 161–166.

    CAS  Google Scholar 

  • Kayama, T. (1962a). Chemical studies on decayed wood as a raw material for pulp. IV. The behavior of decayed wood cellulose during pulping process (sulfite cooking and bleaching). Mokuzai Gakkaishi, 8 (2), 87–90.

    CAS  Google Scholar 

  • Kayama, T. (1962b). Chemical studies on decayed wood as a raw material for pulp. V. Progressive changes in degree of polymerization of decayed wood cellulose and effect of decay on degree of polymerization and crystalline region of pulp from decayed wood. Mokuzai Gakkaishi, 8 (5), 197–203.

    Google Scholar 

  • Kirk, T.K. (1975). Effects of brown-rot fungus, Lenzites trabea, on lignin spruce wood. Holzforschunq, 29 (3), 99–107.

    Article  CAS  Google Scholar 

  • Kirk, T.K. and Adler, E. (1969). Catechol moieties in enzymatically liberated lignin. Acta Chem. Scand., 23, 705–707.

    Article  CAS  Google Scholar 

  • Kirk, T.K. and Adler, E. (1970). Methoxyl-deficient structural elements in lignin of sweetgum decayed by a brown-rot fungus. Acta Chem. Scand., 24, 3379–3390.

    Article  CAS  Google Scholar 

  • Kirk, T.K, Larsson, S., and Miksceal, G.E.. (1970). Aromatic hydroxylation resulting from attack of lignin by a brown-rot fungus. Acta Chem. Scand,. 24, 1470–1472.

    Article  CAS  Google Scholar 

  • Kirk, T.K., Connors, W.J., Bleamm R.D., Hackett, W.F., and Zeikus, J.G. (1975).

    Google Scholar 

  • Preparation and microbial decomposition of synthetic [14C] lignins. Proc. Nati. Acad. Sci., USA 72(7), 2515–2519.

    Google Scholar 

  • Kirk, T.K., Mozuch, M.D., and Tien, M. (1985). Free hydroxyl radical is not involved in an important reaction of lignin degradation by Phanerochaete chrysosporium Burds. Biochem. J., 226, 455–460.

    CAS  Google Scholar 

  • Kirk, T.K., Highley, T.L., Ibach, R., and Mozuch, M.D. (1989). Identification of terminal structures in cellulose degraded by the brown-rot fungus Postia placenta. The International Research Group on Wood Preservation, Document No. IRG/WP/1389, IRG Secretariat, Box 5607, S-114 86 Stockholm, Sweden.

    Google Scholar 

  • Kirk, T.K., Ibach R.E., Mozuch, M.D., Conner, A.H., and Highley, T.L. (1991). Characterization of cotton cellulose depolymerized by a brown-rot fungus, by acid, or by chemical oxidants. Holzforschung, 45 (4), 239–244.

    Article  CAS  Google Scholar 

  • Koenigs, J.W. (1972a). Effects of hydrogen peroxide on cellulose and on its susceptibility to cellulase. Mat. und. Orq., 7, 133–147.

    Google Scholar 

  • Koenigs, J.W. (1972b). Production of extracellular hydrogen peroxide by wood-rotting fungi. Phytopathologv, 62, 100–110.

    Article  CAS  Google Scholar 

  • Koenigs, J.W. (1974a). Hydrogen peroxide and iron: A proposed system for decomposition of wood by brown-rot basidiomycetes. Wood Fib., 6 (1), 66–80.

    Google Scholar 

  • Koenigs, J.W. (1974b). Production of hydrogen peroxide by wood-rotting fungi in wood and its correlation with weight loss, depolymerization, and pH changes. Arch. Microbiol., 99, 129–145.

    Article  CAS  Google Scholar 

  • Koenigs, J.W. (1975). Hydrogen peroxide and iron: A microbial cellulolytic system? Biotechnol. Bioeng. Symp. No. 5, 151–159.

    Google Scholar 

  • Kohdzuma, Y., Minato, K, Katayama, Y., Okamura, K. (1991). Preparation of artificial waterlogged wood. II. Comparison of some characteristics of wood degraded by Fenton’s reagent with those of waterlogged wood. Mokuzai Gakkaishi, 37 (5), 473–480.

    CAS  Google Scholar 

  • Larsen, B. and Smidsred, O. (1967). The effect of pH and buffer ions on the degradation of carbohydrates by Fenton’s reagent. Acta Chem. Scand., 21 (2), 552–564.

    Article  CAS  Google Scholar 

  • Liese, W. (1970). Ultrastructural aspects of woody tissue disintegration. Ann. Rev. Phvtopathol., 8, 231–258.

    Article  Google Scholar 

  • Lundborg, A. (1988). Deformation of agar by wood decaying fungia possible indication of the occurrence of radicals. Mater. and Orq., 23 (4), 259–269.

    CAS  Google Scholar 

  • Maskos, Z., Rush, J.D., and Koppeno, W.H. (1990). The hydroxylation of the salicylate anion by a Fenton reaction and G-radiolysis: A consideration of the respective mechanisms. J. Free Radical Biol. Med., 8, 153–162.

    Article  CAS  Google Scholar 

  • Micales, J.A. and Highley, T.L. (1989). Physiological characteristics of a non-degradative isolate of Postia (= Poria) placenta. Mycologia, 81 (2), 205–215.

    Article  Google Scholar 

  • Moody, G.J. (1963). The action of Fenton’s reagent on carbohydrates. Tetrahedron, 19, 1705–1710.

    Article  CAS  Google Scholar 

  • Moody, G.J. (1964). The action of hydrogen peroxide on carbohydrates and related compounds. Advances in Carbohydrate Chem., 19, 149–179.

    Article  CAS  Google Scholar 

  • Nevell, T.P. (1985). Oxidation of cellulose. In: Cellulose Chemistry and its Applications. pp. 243–265 ( T.P. Nevell and S.H. Zeronian, eds.), Ellis Norwood Limited, Chichester, England.

    Google Scholar 

  • Nilsson, T. (1974). Comparative study on the cellulolytic activity of white-rot and brown-rot fungi. Mater. and Orq., 9, 173–198.

    Google Scholar 

  • Paszcynski, A., Crawford, R.L., and Blanchette, R.A. (1988). Delignification of wood chips and pulps by using natural and synthetic porphyrins: Models of fungal decay. Appl. Environ. Microb., 54 (1), 62–68.

    Google Scholar 

  • Phillip, B., Dan D.C., and Fink, H.P. (1981). Acid and enzymatic hydrolysis of cellulose in relation to its physical structure. Proc. Inter. Symp. on Wood and Pulping Chem., ( Stockholm ) 4, 79–83.

    Google Scholar 

  • Rahhal, S. and Richter, H.W. (1988).. Reduction of hydrogen peroxide by the ferrous iron chelate of diethylenetriamine-N,N,N’,N“,N”-pentaacetate. J. Am. Chem. Soc., 110, 3126–3133.

    Google Scholar 

  • Ritschkoff, A.-C., Paajanen L., and Viikari, L. (1990). The production of extracellular hydrogen peroxide by some brown-rot fungi. The International Research Group on Wood Preservation, IRG Document No. IRG/WP/1446, IRG Secretariat, Box 5607, S-114 86 Stockholm, Sweden.

    Google Scholar 

  • Ritschkoff, A.-C. and Viikari, L. (1991a). The production of extracellular hydrogen peroxide production by brown-rot fungi. Mat. and Org., 26 (2), 157–167.

    CAS  Google Scholar 

  • Ritschkoff, A.-C. and Viikari, L. (1991b). The influence of crystalline and amorphous cellulose on extracellular hydrogen peroxide production by brown-rot fungi. The International Research Group on Wood Preservation, IRG Document No. IRG/WP/1482, IRG Secretariat, Box 5607, S-114 86 Stockholm, Sweden.

    Google Scholar 

  • Rush, J.D. and Koppenol, W.H. (1986). Oxidizing intermediates in the reaction of ferrous EDTA with hydrogen peroxide. J. Biol. Chem., 261 (15), 6730–6733.

    CAS  Google Scholar 

  • Schmidt, C.J. (1980). The role of oxalic acid in the nonenzymatic decomposition of cellulose. M.S. Thesis, Michigan Technological University.

    Google Scholar 

  • Schmidt, C.J., Whitten B.K., and Nicholas, D.D. (1981). A proposed role for oxalic acid in non-enzymatic wood decay by brown-rot fungi. Proc. Am. Wood Preserv. Assoc., 77, 157–164.

    Google Scholar 

  • Shimada, M., Akamatsu, Y., Ohta, A., and Takahashi, M. (1991). Biochemical relationships between biodegradation of cellulose and formation of oxalic acid in brown-rot wood decay. The International Research Group on Wood Preservation, IRG Document No. IRG/WP/1472, IRG Secretariat, Box 5607, S-114 86 Stockholm, Sweden.

    Google Scholar 

  • Smidsrod, O., Haug, A., and Larsen, B. (1965). Kinetic studies on the degradation of alginic acid by hydrogen peroxide in the presence of iron salts. Acta Chem. Scand., 19, 143–152.

    Article  Google Scholar 

  • Szklarz, G.D., Antibus, R.F., Sinsabaugh, R.L., and Linkins, A.E. (1989). Production of phenol oxidases and peroxidases by wood-rotting fungi. Mvcologia, 81 (2), 234–240.

    Article  CAS  Google Scholar 

  • Takao, S. (1965). Organic acid production by basidiomycetes. Applied Microbiology, 13, 732–737.

    CAS  Google Scholar 

  • Tatsumi, K., Araki, H., and Terashima, N. (1980). Oxidative degradation of lignin. II. Degradation of specifically 14C-labeled kraft lignin with hydrogen peroxide and ferrous salts. Mokuzai Gakkaishi, 26 (5), 327–333.

    CAS  Google Scholar 

  • Thompson, N.S. and Corbett, H.M. (1985). The effect of potassium superoxide on cellulose. TAPPI, 68 (12), 68–71.

    CAS  Google Scholar 

  • Uchida, K. and Kawakishi, S. (1988). Interaction of (1,41- and (1,61-linked disaccharides with the Fenton reagent under physiological conditions. Carbohydr. Res. 173, 89–99.

    Article  CAS  Google Scholar 

  • Veness, R.G. and Evans, C.S. (1989). The role of hydrogen peroxide in the degradation of crystalline cellulose by basidiomycete fungi. J. Gen. Microbiol., 135, 2799–2806.

    CAS  Google Scholar 

  • von Sonntag, C. (1980). Free-radical reactions of carbohydrates as studied by radiation techniques. Advances in Carbohydrate Chem. and Biochem., 37, 7–77.

    CAS  Google Scholar 

  • Walling, C. (1975). Fenton’s reagent revisited. Acc. Chem. Res., 8, 125–131.

    Article  CAS  Google Scholar 

  • Walling, C. and Johnson, R.A. (1975). Fenton’s reagent. V. Hydroxylation and side-chain cleavage of aromatics. J. Chem. Soc., 97 (2), 363–367.

    Article  CAS  Google Scholar 

  • Wolter, K.E., Highley, T.L., and Evans, F.J. (1980). A unique polysaccharide-and glucoside-degrading enzyme complex from the wood-decay fungus Poria placenta. Biochem. Biophys. Res. Commun., 97 (4), 1499–1504.

    Article  CAS  Google Scholar 

  • Yamafuji, K. and Urakami, M. (1950). The action of iron and hydrogen peroxide on polysaccharides. J. Fac. Agr. (Kyushu Univ.), 9, 333–339. Chem Abstr., 46, 1 1117.

    Google Scholar 

  • Yamazaki, I. and Piette, L.H. (1990). ESR spin-trapping studies on the reaction of Fee+ ions with H202-reactive species in oxygen toxicity in biology. J. Biol. Chem., 265 (23), 13589–13594.

    CAS  Google Scholar 

  • Zbaida, S., Kariv, R., and Fischer, P. (1988). The role of iron chelates on the selectivity of Fenton reagent in hydroxylation, N-demethylation, and sulfoxidation of cimetidine: A novel biomimetic model for the regioselectivity of cytochrome P-450. Arch. Biochem. Biophys., 261, 12–15.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Flournoy, D.S. (1994). Chemical Changes in Wood Components and Cotton Cellulose as a Result of Brown Rot: Is Fenton Chemistry Involved?. In: Llewellyn, G.C., Dashek, W.V., O’Rear, C.E. (eds) Mycotoxins, Wood Decay, Plant Stress, Biocorrosion, and General Biodeterioration. Biodeterioration Research, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9450-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9450-2_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9452-6

  • Online ISBN: 978-1-4757-9450-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics