Skip to main content

The Reduction of Sulfate and the Oxidation of Sulfide

  • Chapter
Biochemistry of Sulfur

Part of the book series: Biochemistry of the Elements ((BOTE,volume 6))

Abstract

The sulfhydryl-containing amino acids, Met and Cys, are needed by all life forms for protein synthesis and a myriad other tasks. Under the oxidizing conditions found over most of this planet, sulfur is present in the geosphere in the form of sulfate. Reduction of sulfate is expensive, requiring approximately 840 kJ·mol−1. The inability of multicellular animals to reduce sulfate to sulfide is part of a general lack of reductive capability. Such organisms are also unable to reduce nitrate to ammonia (142 kJ·mol−1) and carbon dioxide to carbohydrate (460 kJ·mol−1). The animal kingdom must rely on the plant and bacterial kingdoms for provision of the reduced forms of these elements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrams, W. R., and Schiff, J. A., 1973. Studies of sulfate utilization by algae. II. Enzyme-bound intermediate in reduction of adenosine-5-phosphosulfate (APS) by cell-free-extracts of wild-type Chlorella and mutants blocked for sulfate reduction, Arch. Mikrobiol. 94:1–10.

    PubMed  CAS  Google Scholar 

  • Adair, F. W., 1966. Membrane-associated sulfur oxidation by the autotroph Thiobacillus thiooxidans, J. Bacteriol. 92:899–904.

    PubMed  CAS  Google Scholar 

  • Akagi, J. M., 1976. Dissimilatory sulphate reduction, mechanistic aspects, in Biology of Inorganic Nitrogen and Sulfur (H. Bothe and A. Trebst, eds.), Springer, Berlin, pp. 178–187.

    Google Scholar 

  • Akagi, J. M., and Campbell, L. L., 1962. Studies on thermophilic sulfate-reducing bacteria. 3. Adenosine triphosphate-sulfurylase of Clostridium nigrificans and Desulfovibrio desulfuricans, J. Bacteriol. 84:1194-1201. Aminuddin, M., and Nicholas, D. J. D., 1973. Sulfide oxidation linked to the reduction of nitrate and nitrite in Thiobacillus denitrificans, Biochim. Biophys. Acta 325:81–93.

    Google Scholar 

  • Aminuddin, M., and Nicholas, D. J. D., 1974. Electron transfer during sulfide and sulfite oxidation in Thiobacillus denitrificans, J. Gen. Microbiol. 82:115–123.

    Google Scholar 

  • Antoniewski, J., and de Robichon-Szulmajster, H., 1973. Biosynthesis of methionine and its control in wild type and regulatory mutants of Saccharomyces cerevisiae, Biochimie 55:529–539.

    PubMed  CAS  Google Scholar 

  • Asada, K., Tamura, G., and Bandurski, R. S., 1968. Methyl viologen-linked sulfite reductase from spinach leaves—a hemoprotein, Biochem. Biophys. Res. Commun. 30:554–568.

    PubMed  CAS  Google Scholar 

  • Baliga, B. S., Vartak, H. G., and Jagannathan, V., 1961. Purification and properties of sulfurylase from Desulfovibrio de sulfuricans, J. Sci. Ind. Res. (India) 20C:33–40.

    CAS  Google Scholar 

  • Baross, J. A., and Deming, J. W., 1983. Growth of ‘black smoker’ bacteria at temperatures of at least 250°C, Nature 303:423–426.

    CAS  Google Scholar 

  • Baross, J. A., Lilley, M. D., and Gordon, L. I., 1982. Is the methane, hydrogen and carbon monoxide venting from submarine hydrothermal systems produced by thermophilic bacteria?, Nature 298:366–368.

    CAS  Google Scholar 

  • Bass-Becking, L. G. M., 1925. Studies on the sulphur bacteria, Ann. Bot. 39:613–650.

    Google Scholar 

  • Beebe, J. L., and Umbreit, W. W., 1971. Extracellular lipid of Thiobacillus thiooxidans, J. Bacteriol. 108:612–614.

    PubMed  CAS  Google Scholar 

  • Bell, G. R., Lee, J. P., Peck, H. D., and LeGall, J., 1978. Reactivity of Desulfovibrio gigas hydrogenase towards artificial and natural electron donors, Biochimie 60:315–320.

    PubMed  CAS  Google Scholar 

  • Biebl, H., and Pfennig, N., 1977. Growth of sulfate-reducing bacteria with sulfur as electron acceptor, Arch. Microbiol. 112:115–117.

    PubMed  CAS  Google Scholar 

  • Binkley, F., 1955. Cystathione cleavage enzymes, in Methods in Enzymology, Vol. 2 (S. P. Colowick and N. O. Kaplan, eds.), Academic Press, New York, pp. 311–314.

    Google Scholar 

  • Black, W. J., and Wang, J. H.-C., 1970. Allosteric activation of glycogen phosphorylase b by nucleotides. II. Nucleotide structure in relation to mechanism of activation, Biochim. Biophys. Acta 212:257–268.

    PubMed  CAS  Google Scholar 

  • Blakley, R. L., 1969. The Biochemistry of Folic Acid and Related Pteridines, Frontiers of Biology, Vol. 3, Wiley, New York, 569 pp.

    Google Scholar 

  • Bloomfield, C., 1969. Sulphate reduction in waterlogged soils, J. Soil Sci. 20:207–221.

    CAS  Google Scholar 

  • Board, P. A., 1976. Bacterial sulphate reduction and the anaerobic regulation of atmospheric oxygen, Atmos. Environ. 10:339–342.

    PubMed  CAS  Google Scholar 

  • Bothe, H., and Trebst, A., 1981. Biology of Inorganic Nitrogen and Sulfur, Springer-Verlag, Berlin.

    Google Scholar 

  • Bowen, T. J., Happold, F. C., and Taylor, B. F., 1966. Studies on adenosine-5′-phospho-sulphate reductase from Thiobacillus denitrificans, Biochim. Biophys. Acta 118:566–576.

    PubMed  CAS  Google Scholar 

  • Bradfield, G., Sommerfield, P., Meyn, T., Holby, M., Babcock, D., Bradley, D., and Segel, I. H., 1970. Regulation of sulfate transport in filamentous fungi, Plant Physiol. 46:120–121.

    Google Scholar 

  • Breton, A., and Surdin-Kejan, Y., 1977. Sulfate uptake in Saccharomyces cerevisiae biochemical and genetic study, J. Bacteriol. 132:224–232.

    PubMed  CAS  Google Scholar 

  • Broda, E., 1975. The Evolution of Bioenergetic Processes, Pergamon Press, Oxford, 211 pp.

    Google Scholar 

  • Bruggemann, J., and Waldschmidt, M., 1962. Die serinsulfhydrase aus Hühnerleber: Ruckreaktion und vergleich mit der Cysteindesulfhydrase, Biochem. Z. 335:408–422.

    Google Scholar 

  • Bruggemann, J., Schlossmann, K., Merkenschlarger, M., and Waldschmidt, M., 1962. Zur Frage des Vorkommens der Serinsulfhydrase, Biochem. Z. 335:392.

    Google Scholar 

  • Brunngraber, E. C., 1958. Nucleotides involved in the enzymatic conjugation of phenols with sulfate, J. Biol. Chem. 233:472–477.

    PubMed  CAS  Google Scholar 

  • Brunold, C., and Schiff, J. A., 1975. Assimilatory sulfate reduction in Euglena gracillis var bacillaris, Plant Physiol. 56:S36.

    Google Scholar 

  • Brunold, C., and Schiff, J. A., 1976. Studies of sulfate utilization by algae. 15. Enzymes of assimilatory sulfate reduction in Euglena and their cellular localization, Plant Physiol. 57:430–436.

    PubMed  CAS  Google Scholar 

  • Brush, A., and Paulus, H., 1971. Enzymic formation of 0-acetylhomoserine in Bacillus subtilis and its regulation by methionine and S-adenosylmethionine. Biochem. Biophys. Res. Commun. 45:735–741.

    PubMed  CAS  Google Scholar 

  • Brush, A. W., and Paulus, H., 1973. Regulation of homoserine transacetylase in Bacillus polymyxa, Fed. Proc. 32:463.

    Google Scholar 

  • Bunker, H. J., 1936. A Review of the Physiology and Biochemistry of the Sulphur Bacteria, HM Stationery Office, London.

    Google Scholar 

  • Burnell, J. N., and Whatley, F. R., 1977. Sulfur metabolism in Paracoccus denitrificans— purification, properties and regulation of serine transacetylase, O-acetylserine sulfhy-drylase and ß-cystathionase, Biochim. Biophys. Acta 481:246–265.

    PubMed  CAS  Google Scholar 

  • Burnell, J. N., John, P., and Whatley, F. R., 1975. Reversibility of active sulfate transport in membrane vesicles of Paracoccus denitrificans, Biochem. J. 150:527–536.

    PubMed  CAS  Google Scholar 

  • Burton, E. G., and Metzenberg, R. L., 1972. Novel mutation causing derepression of several enzymes of sulfur metabolism in Neurospora crassa, J. Bacteriol. 109:140–151.

    PubMed  CAS  Google Scholar 

  • Burton, E., and Sakami, W., 1969. Formation of methionine from the monoglutamate form of methyltetrahydrofolate by higher plants, Biochem. Biophys. Res. Commun. 36:228–234.

    PubMed  CAS  Google Scholar 

  • Burton, E., Selhub, J., and Sakami, W., 1969. Substrate specificity of 5-methyltetrahy-dropteroyltriglutamate-homocysteine methyltransferase, Biochem. J. 111:793–795.

    PubMed  CAS  Google Scholar 

  • Cauthen, S. E., Pattison, J. R., and Lascelles, J., 1967. Vitamin B12 in photosynthetic bacteria and methionine synthesis by Rhodopseudomonas spheroides, Biochem. J. 102:774–781.

    PubMed  CAS  Google Scholar 

  • Chambers, L. A., and Trudinger, P. A., 1971. Cysteine and S-sulfocysteine biosynthesis in bacteria, Arch. Mikrobiol. 77:165–184.

    PubMed  CAS  Google Scholar 

  • Charles, A. M., and Suzuki, I., 1966a. Purification and properties of sulfite: Cytochrome c oxidoreductase from Thiobacillus novellus, Biochim. Biophys. Acta 128:522–534.

    Google Scholar 

  • Charles, A. M., and Suzuki, I., 1966b. Mechanism of thiosulfate oxidation by Thiobacillus novellus, Biochim. Biophys. Acta 128:510–521.

    Google Scholar 

  • Cherest, H., Eichler, F., and de Robichon-Szulmajster, H., 1969. Genetic and regulatory aspects of methionine biosynthesis in Saccharomyces cerevisiae, J. Bacteriol. 97:328–336.

    PubMed  CAS  Google Scholar 

  • Cherest, H., Surdin-Kerjan, Y., Antoniewski, J., and de Robichon-Szulmajster, H., 1971. Methionine-mediated repression in Saccharomyces cerevisiae. Pleiotropic regulatory system involving methionyl transfer ribonucleic acid and the product of gene eth2, J. Bacteriol. 106:758–772.

    PubMed  CAS  Google Scholar 

  • Cherest, H., Surdin-Kerjan, Y., Antoniewski, J., and de Robichon-Szulmajster, H., 1973. S-Adenosylethionine-mediated repression of methionine biosynthetic enzymes in Saccharomyces cerevisiae, J. Bacteriol. 114:928–933.

    PubMed  CAS  Google Scholar 

  • Cole, J. S., and Aleem, M. I. H., 1970. Oxidative phosphorylation in Thiobacillus novellus, Biochem. Biophys. Res. Commun. 38:736–743.

    PubMed  Google Scholar 

  • Cole, J. S., and Aleem, M. I. H., 1973. Electron transport-linked compared with proton-induced ATP generation in Thiobacillus novellus, Proc. Natl. Acad. Sci. USA 70:3571–3575.

    PubMed  CAS  Google Scholar 

  • Collins, J. M., and Monty, K. J., 1975. Cysteine biosynthesis in Salmonella typhimurium— presence of ATP-sulfurylase and APS-kinase in various cysteine-requiring mutants, Can. J. Biochem. 53:1118–1121.

    PubMed  CAS  Google Scholar 

  • Cuppoletti, J., and Segel, I. H., 1975. Kinetic analysis of active membrane transport systems—equations for net velocity and isotope-exchange, J. Theor. Biol. 53:125–144.

    PubMed  CAS  Google Scholar 

  • Datko, A. H., Giovanelli, J., and Mudd, S. H., 1973. Homocysteine synthesis in green plants. 2. Utilization of homoserine esters by cystathionine γ-synthase, Plant Physiol. 51:S50.

    Google Scholar 

  • Datko, A. H., Mudd, S. H., and Giovanelli, J., 1977. Homocysteine biosynthesis in green plants—studies of homocysteine-forming sulhydrylase, J. Biol. Chem. 252:3436–3445.

    CAS  Google Scholar 

  • Davis, E. A., and Johnson, E. J., 1967. Phosphorylation coupled to the oxidation of sulfite and 2-mercaptoethanol in extracts of Thiobacillus thioparus, Can. J. Microbiol. 13:873–884.

    PubMed  CAS  Google Scholar 

  • Dawes, J., and Foster, M. A., 1971. Vitamin B12 and methionine synthesis in Escherichia coli, Biochim. Biophys. Acta 237:455–464.

    PubMed  CAS  Google Scholar 

  • Delavier-Klutchko, C., and Flavin, M., 1965a. Role of a bacterial cystathionine ß-cleavage enzyme in disulfide decomposition, Biochim. Biophys. Acta 99:315–311.

    Google Scholar 

  • Delavier-Klutchko, C., and Flavin, M., 1965b. Enzymatic synthesis and cleavage of cystathionine in fungi and bacteria, J. Biol. Chem. 240:2537–2549.

    PubMed  CAS  Google Scholar 

  • De Meio, R. H., 1975. Sulfate activation and transfer, in Metabolic Pathways, Vol. VII, Metabolism of Sulfur Compounds, 3rd Ed. (D. M. Greenberg, ed.), Academic Press, New York, pp. 287–358.

    Google Scholar 

  • Dilworth, G. L., and Bandurski, R. S., 1977. Activation of selenate by adenosine 5′-tri-phosphate sulfurylase from Saccharomyces-cerevisiae, Biochem. J. 163:521–529.

    PubMed  CAS  Google Scholar 

  • Dodd, W. A., and Cossins, E. A., 1970. Homocysteine-dependent transmethylases catalyzing the synthesis of methionine in germinating pea seeds, Biochim. Biophys. Acta 201:461–470.

    PubMed  CAS  Google Scholar 

  • Drake, H. L., and Akagi, J. M., 1978. Dissimilatory reduction of bisulfite by Desulfovibrio vulgaris, J. Bacteriol. 136:916–923.

    PubMed  CAS  Google Scholar 

  • Dreyfuss, J., 1964. Characterization of a sulfate-and thiosulfate-transporting system in Salmonella typhimurium, J. Biol. Chem. 239:2292–2297.

    PubMed  CAS  Google Scholar 

  • Dreyfuss, J., and Monty, K. J., 1963. The biochemical characterization of cysteine-requiring mutants of Salmonella typhimurium, J. Biol. Chem. 238:1019–1024.

    CAS  Google Scholar 

  • Drozd, J. W., 1977. Energy conservation in Thiobacillus neapolitanus C: Sulfide and sulfite oxidation, J. Gen. Microbiol. 98:309–312.

    PubMed  CAS  Google Scholar 

  • Fankhauser, H., and Schiff, J. A., 1980. Further purification and properties of adenylyl sulfate (APS): ammonia adenylyl transferase (APSAT) from Chlorella, Plant Physiol. 65:S17.

    Google Scholar 

  • Fankhauser, H., Garber, L. J., and Schiff, J. A., 1979. Adenylyl sulfate (APS)-ammonia adenylyl transferase (APSAT) forming adenosine 5′ phosphoramidate (APA) from APS and ammonia, Plant Physiol. 63:S162.

    Google Scholar 

  • Fauque, G. D., Barton, L. L., and Le Gall, J., 1980. Oxidative phosphorylation linked to dissimilatory reduction of elemental sulphur by Desulfovibrio, in Sulphur in Biology, Ciba Found. Symp. 72, Excerpta Medica, Amsterdam, pp. 71–86.

    Google Scholar 

  • Findley, J. E., and Akagi, J. M., 1969. Evidence for thiosulfate formation during sulfite reduction by Desulfovibrio vulgaris, Biochem. Biophys. Res. Commun. 36:266–271.

    PubMed  CAS  Google Scholar 

  • Findley, J. E., and Akagi, J. M., 1970. Role of thiosulfate in bisulfite reduction as catalysed by Desulfovibrio vulgaris, J. Bacteriol. 103:741–744.

    PubMed  CAS  Google Scholar 

  • Fischer, U., and Trüper, H. G., 1977. Cytochrome c-550 of Thiocapsa roseopersicina: Properties and reduction by sulfide, FEMS Microbiol. Lett. 1:87–90.

    CAS  Google Scholar 

  • Fisher, G. A., 1957. The cleavage and synthesis of cystathionine in wild type and mutant strains of Neurospora crassa Biochim. Biophys. Acta 25:50–55.

    Google Scholar 

  • Fjerdingstad, E., 1979. Sulfur Bacteria, American Society for Testing and Materials, Philadelphia.

    Google Scholar 

  • Flavin, M., 1975. Methionine biosynthesis, in Metabolic Pathways, Vol. VII, Metabolism of Sulfur Compounds, 3rd Ed. (D. M. Greenberg, ed.), Academic Press, New York, pp. 457–504.

    Google Scholar 

  • Flavin, M., and Slaughter, C., 1964. Cystathionine cleavage enzymes of Neurospora, J. Biol. Chem. 239:2212–2219.

    PubMed  CAS  Google Scholar 

  • Flavin, M., and Slaughter, C., 1967. Enzymatic synthesis of homocysteine or methionine directly from O-succinylhomoserine, Biochim. Biophys. Acta 132:400–405.

    PubMed  CAS  Google Scholar 

  • Flavin, M., Delavier-Klutchko, C., and Slaughter, C., 1964. Succinic ester and amide of homoserine: Some spontaneous and enzymatic reactions, Science 143:50–52.

    PubMed  CAS  Google Scholar 

  • Fox, G. E., Stackebrandt, E., Hespell, R. B., Gibson, J., Maniloff, J., Dyer, T. A., Wolfe, R. S., Balch, W. E., Tanner, R. S., Magrum, L. J., Zablen, L. B., Blakemore, R., Gupta, R., Bonen, L., Lewis, B. J., Stahl, D. A., Luehrsen, K. R., Chen, K. N., and Woese, C. R., 1980. The phylogeny of prokaryotes, Science 209:457–463.

    PubMed  CAS  Google Scholar 

  • Fujimoto, D., and Ishimoto, M., 1961. Sulfate reduction in Escherichia coli, J. Biochem. 50:533–537.

    PubMed  CAS  Google Scholar 

  • Giovanelli, J., and Mudd, S. H., 1966. Enzymatic synthesis of cystathionine by extracts of spinach, requiring O-acetylhomoserine or O-succinylhomoserine, Biochem. Biophys. Res. Commun. 25:366–377.

    PubMed  CAS  Google Scholar 

  • Giovanelli, J., and Mudd, S. H., 1967. Synthesis of homocysteine and cysteine by enzyme extracts of spinach, Biochem. Biophys. Res. Commun. 27:150–156.

    PubMed  CAS  Google Scholar 

  • Giovanelli, J., and Mudd, S. H., 1971. Transsulfuration in higher plants. Partial purification and properties of ß-cystathionase of spinach, Biochim. Biophys. Acta 227:654–670.

    PubMed  CAS  Google Scholar 

  • Giovanelli, J., Mudd, S. H., and Datko, A. H., 1973. Homocysteine synthesis in green plants—enzymic esterification of homoserine, Plant Physiol. 51:S50.

    Google Scholar 

  • Goldhaber, M. B., and Kaplan, I. R., 1974. Sulfur cycle, in The Sea, Vol. 5 (M. N. Hill, A. E. Maxwell, and E. D. Goldberg, eds.), Wiley, New York, pp. 569–655.

    Google Scholar 

  • Granat, L., Hallberg, R. O., and Rodhe, H., 1976. The global sulphur cycle, in Nitrogen, Phosphorus and Sulphur—Global Cycles (B. H. Svensson and R. Soderlund, eds.), Ecol. Bull. (Stockholm) 20:89–134.

    Google Scholar 

  • Gregory, J. D., and Robbins, P. W., 1960. Metabolism of sulfur compounds (sulfate metabolism), Annu. Rev. Biochem. 29:347–364.

    PubMed  CAS  Google Scholar 

  • Griffiths, J. M., and Daniel, L. J., 1969. Methionine biosynthesis in Ochromonas malha-mensis, Arch. Biochem. Biophys. 134:463–472.

    PubMed  CAS  Google Scholar 

  • Guggenheim, S., 1971. ß-Cystathionase (Salmonella), in Methods in Enzymology, Vol. 17B (S. P. Colowick, ed.), Academic Press, New York, pp. 439–442.

    Google Scholar 

  • Hageage, G. J., Jr., Eanes, E. D., and Gherna, R. L., 1970. X-ray diffraction studies of the sulfur globules accumulated by Chromatium species, J. Bacteriol. 101:464–469.

    PubMed  CAS  Google Scholar 

  • Hallberg, R. O., 1972. Sedimentary sulfide mineral formation—an energy circuit system approach, Mineral Deposita 7:189–201.

    CAS  Google Scholar 

  • Hawes, C. S., and Nicholas, D. J. D., 1973. Adenosine-5′-triphosphate sulfurylase from Saccharomyces cerevisiae, Biochem. J. 133:541–550.

    PubMed  CAS  Google Scholar 

  • Hendrickson, H. R., and Conn, E. E., 1969. Cyanide metabolism in higher plants. 4. Purification and properties of ß-cyanoalanine synthase of blue lupine, J. Biol. Chem. 244:2632–2640.

    PubMed  CAS  Google Scholar 

  • Hensel, G., and Trüper, H. G., 1976. Cysteine and S-sulfocysteine biosynthesis in phototrophic bacteria, Arch. Microbiol. 109:101–103.

    PubMed  CAS  Google Scholar 

  • Hensel, G., and Trüper, H. G., 1981. O-Acetylserine sulfhydrylase and O-sulfocysteine synthase activities of Chromatium vinosum, Arch. Microbiol. 130:228–233.

    CAS  Google Scholar 

  • Hensel, G., and Trüper, H. G., 1983. O-Acetylserine sulfhydrylase and S-sulfocysteine synthase activities of Rhodospirillum tenue, Arch. Microbiol. 134:227–23

    PubMed  CAS  Google Scholar 

  • Horowitz, N. H., 1947. Methionine synthesis in Neurospora. The isolation of cystathionine, J. Biol. Chem. 171:255–264.

    CAS  Google Scholar 

  • Huovinen, J. A., and Gustafsson, B. E., 1967. Inorganic sulfate sulphite and sulphide as sulphur donors in biosynthesis of sulphur amino acids in germ-free and conventional rats, Biochim. Biophys. Acta 136:441–447.

    PubMed  CAS  Google Scholar 

  • Hussey, C., Orsi, B. A., Scott, J., and Spencer, B., 1965. Mechanism of choline sulphate utilization in fungi, Nature 207:632–634.

    PubMed  CAS  Google Scholar 

  • Iizuka, H., Adachi, K., Halprin, K. M., and Levine, V., 1976. Adenosine and adenine nucleotides stimulation of skin (epidermal) adenylate cyclase, Biochim. Biophys. Acta 444:685–693.

    PubMed  CAS  Google Scholar 

  • Imagawa, T., and Tsugita, A., 1972. Studies on primary structure of sulfate binding protein from Salmonella typhimurium. 1. Tryptic digestion, J. Biochem. (Tokyo) 72:889–910.

    CAS  Google Scholar 

  • Ingvorsen, K., and Jørgensen, B. B., 1982. Seasonal variation in hydrogen sulfide emission to the atmosphere from intertidal sediments in Denmark, Atmos. Environ. 16:855–865.

    CAS  Google Scholar 

  • Ishimoto, M., and Fujimoto, D., 1961. Biochemical studies on sulfate-reducing bacteria. X. Adenosine-5′-phosphosulfate reductase, J. Biochem. (Tokyo) 50:299–304.

    Google Scholar 

  • Jones, H. E., and Skyring, G. W., 1974. Reduction of sulfite catalyzed by desulfoviridin from Desulfovibrio gigas, Aust. J. Biol. Sci. 27:7–14.

    PubMed  CAS  Google Scholar 

  • Jones, H. E., and Skyring, G. W., 1975. Effect of enzymic assay conditions on sulfite reduction catalyzed by desulfoviridin from Desulfovibrio gigas, Biochim. Biophys. Acta 337:52–60.

    Google Scholar 

  • Jones, G. E., and Starkey, R. L., 1961. Surface-active substances produced by Thiobacillus thiooxidans, J. Bacteriol. 82:788–789.

    PubMed  CAS  Google Scholar 

  • Jones, K. M., Guest, J. R., and Woods, D. D., 1961. Folic acid and the synthesis of methionine by extracts of Escherichia coli, Biochem. J. 79:566–574.

    PubMed  CAS  Google Scholar 

  • Jørgensen, B. B., 1982. Ecology of the bacteria of the sulfur cycle with special reference to anoxic-oxic interface environments, Philos. Trans. R. Soc. London, Ser. B 298:543–561.

    PubMed  Google Scholar 

  • Jørgensen, B. B., and Fenchel, T., 1974. Sulfur cycle of a marine sediment model system, Marine Biol. 24:189–201.

    Google Scholar 

  • Joyce, J., 1916. Portrait of an Artist as a Young Man, B. W. Huebsch, New York (see, e.g., Folio Society Edition, London, 1965, pp. 126-141).

    Google Scholar 

  • Junge, C., 1972. Sulphur supplies of atmospheric origin, in Symposium international sur le Soufre en Agriculture, Ann. Agron. Numéro hors série: 235-247.

    Google Scholar 

  • Kabach, H. R., 1970. Transport, Annu. Rev. Biochem. 39:561–598.

    Google Scholar 

  • Kaplan, I. R., 1956. Evidence of microbiological activity in some of the geothermal regions of New Zealand, NZ J. Sci. Technol. 37:639–662.

    Google Scholar 

  • Kaplan, M. M., and Flavin, M., 1966a. Cystathionine γ-synthase of Salmonella. Catalytic properties of a new enzyme in bacterial methionine biosynthesis, J. Biol. Chem. 241:4463–4471.

    PubMed  CAS  Google Scholar 

  • Kaplan, M. M., and Flavin, M., 1966b. Cystathionine γ-synthase of Salmonella. Structural properties of a new enzyme in bacterial methionine biosynthesis, J. Biol. Chem. 241:5781–5789.

    PubMed  CAS  Google Scholar 

  • Kaplan, M. M., and Guggenheim, S., 1971. Cystathionine γ-synthase (Salmonella), in Methods in Enzymology, Vol. 17B (S. P. Colowick, ed.), Academic Press, New York, pp. 425–433.

    Google Scholar 

  • Kaplan, I. R., and Rittenberg, S. C., 1964. Microbiological fractionation of sulphur isotopes, J. Gen. Microbiol. 34:195–212.

    PubMed  CAS  Google Scholar 

  • Kase, H., Nakayama, N., and Kinoshita, S., 1970. Production of O-succinyl-L-homoserine by auxotrophic mutants of Aerobacter aerogenes, Agric. Biol. Chem. 34:274–281.

    CAS  Google Scholar 

  • Katzen, H. M., and Buchanan, J. M., 1965. Enzymatic synthesis of the methyl group of methionine. VIII. Repression-depression, purification, and properties of 5,10-methylene-tetrahydrofolate reductase from Escherichia coli, J. Biol. Chem. 240:825–835.

    PubMed  CAS  Google Scholar 

  • Kellog, W. W., Cadle, R. D., Allen, E. R., Lazrus, A. L., and Martell, E. A., 1972. The sulphur cycle, Science 175:587–596.

    Google Scholar 

  • Kelly, D. P., 1978. Bioenergetics of chemolithotrophic bacteria, in Companion to Microbiology (A. T. Bull and P. M. Meadow, eds.), Longman, London, pp. 363–386.

    Google Scholar 

  • Kelly, D. P., 1980. The sulphur cycle: Definition, mechanisms and dynamics, in Sulphur in Biology, Ciba Found. Symp. 72, Excerpta Medica, Amsterdam, pp. 3–18.

    Google Scholar 

  • Kelly, D. P., 1982. Biochemistry of the chemolithotrophic oxidation of inorganic sulfur, Philos. Trans. R. Soc. London Ser. B 298:499–528.

    CAS  Google Scholar 

  • Kelly, D. P., and Syrett, P. J., 1964. The effects of uncoupling agents on carbon dioxide fixation by a Thiobacillus, J. Gen. Microbiol. 34:307–317.

    PubMed  CAS  Google Scholar 

  • Kerr, D. S., 1971. O-Acetylhomoserine sulfhydrylase from Neurospora. Purification and consideration of its function in homocysteine and methionine synthesis, J. Biol. Chem. 246:95–102.

    PubMed  CAS  Google Scholar 

  • Kerr, D. S., and Flavin, M., 1969. Inhibition of cystathionine γ-synthase by S-adenosyl-methionine: Control mechanism for methionine synthesis in Neurospora, Biochim. Biophys.Acta 177:177–179.

    PubMed  CAS  Google Scholar 

  • Kerr, D. S., and Flavin, M., 1970. Regulation of methionine synthesis and the nature of cystathionine γ-synthase in Neurospora, J. Biol. Chem. 245:1842–1855.

    PubMed  CAS  Google Scholar 

  • Kerr, D., and Nagai, S., 1967. Enzymatic formation of acetylhomoserine and its utilization for methionine synthesis, Fed. Proc. 26:387.

    Google Scholar 

  • Kobayashi, K., Tachibana, S., and Ishimoto, M., 1969. Intermediary formation of trithionate in sulfite reduction by a sulfate-reducing bacterium, J. Biochem. (Tokyo) 65:155–157.

    CAS  Google Scholar 

  • Kobayashi, K., Takahaski, E., and Ishimoto, M., 1972. Biochemical studies on sulfate-reducing bacteria. XI. Purification and some properties of sulfite reductase, desulfoviridin, J. Biochem. (Tokyo) 72:879–887.

    CAS  Google Scholar 

  • Kobayashi, K., Seki, Y., and Ishimoto, M., 1974. Biochemical studies on sulfate-reducing bacteria. XIII. Sulfite reductase from Desulfovibrio vulgaris. Mechanism of trithionate, thiosulfate, and sulfide formation and enzymic properties, J. Biochem. 75:519–529.

    PubMed  CAS  Google Scholar 

  • Kran, Von G., Schlote, F. W., and Schlegel, H. G., 1963. Cytologische Untersuchungen an Chromatium okenii Perty, Naturwissenschaften 50:728–730.

    Google Scholar 

  • Kredich, N. M., 1971. Regulation of L-cysteine biosynthesis in Salmonella typhimurium. 1. Effects of growth on varying sulfur sources and O-acetyl-L-serine on gene expression, J. Biol. Chem. 246:3474–3484.

    PubMed  CAS  Google Scholar 

  • Kredich, N. M., and Tomkins, G. M., 1966. Enzymic synthesis of L-cysteine in Escherichia coli and Salmonella typhimurium, J. Biol. Chem. 241:4955.

    PubMed  CAS  Google Scholar 

  • Kredich, N. M., Becker, M. A., and Tomkins, G. M., 1969. Purification and characterization of cysteine synthetase, a bifunctional protein complex from Salmonella typhimurium, J. Biol. Chem. 244:2428–2439.

    PubMed  CAS  Google Scholar 

  • Kuenen, J. G., and Tuovinen, O. H., 1981. The genera Thiobacillus and Thiomicrospira, in The Prokaryotes (M. P. Starr, H. Stolp, H. G. Trüper, A. Balows, and H. G. Schlegel, eds.), Springer, Berlin, pp. 1023–2036.

    Google Scholar 

  • Kutzbach, C., and Stokstad, E. L. R., 1967. Purification and some properties of the allosteric methyl-tetrahydrofolate: NADP oxidoreductase from rat liver, Fed. Proc. 26:559.

    Google Scholar 

  • Kuznetsov, S. I., Ivanov, M. V., and Lyalikova, N. N., 1963. Introduction to Geological Microbiology, McGraw-Hill, New York, 252 pp.

    Google Scholar 

  • Laanbroek, H. J., Stal, L. J., and Veldkamp, H., 1978. Utilization of hydrogen and formate by Campylobacter species under aerobic and anaerobic conditions, Arch. Microbiol. 119:99–102.

    PubMed  CAS  Google Scholar 

  • Laduron, P., 1972. N-Methylation of dopamine to epinine in brain tissue using N-methyl-tetrahydrofolic acid as the methyl donor, Nature (London), New Biol. 238:212–213.

    CAS  Google Scholar 

  • Lago, B.D., and Demain, A. L., 1969. Alternate requirement for vitamin B12 or methionine in mutants of Pseudomonas denitrificans, a vitamin B12-producing bacterium, J. Bacteriol. 99:347–349.

    PubMed  CAS  Google Scholar 

  • Langridge, R., Shinagawa, H., and Pardee, A. B., 1970. Sulfate-binding protein from Salmonella typhimurium: Physical properties, Science 169:59–61.

    PubMed  CAS  Google Scholar 

  • Lawrence, D. E., 1972. Regulation of the methionine feedback-sensitive enzyme in mutants of Salmonella typhimurium, J. Bacteriol. 109:8–11.

    PubMed  CAS  Google Scholar 

  • Lee, J. P., Yi, C. S., Le Gall, J., and Peck, H. D., 1973. Isolation of a new pigment desulforubidin, from Desulfovibrio desulfuricans (Norway strain) and its role in sulfite reduction, J. Bacteriol. 115:453–455.

    PubMed  CAS  Google Scholar 

  • Lee, L. W., Ravel, J. M., and Shive, W., 1966. Multimetabolite control of a biosynthetic pathway by sequential metabolites, J. Biol. Chem. 241:5479–5480.

    PubMed  CAS  Google Scholar 

  • Le Gall, J., and Postgate, J. R., 1973. The physiology of sulphate-reducing bacteria, Adv. Microb. Physiol. 10:81–133.

    Google Scholar 

  • Le Gall, J., DerVartanian, D. V., and Peck, H. D., 1979. Flavoproteins, iron proteins and hemoproteins as electron-transfer components of the sulfate reducing bacteria, Curr. Top. Bioenerg. 9:237–265.

    Google Scholar 

  • Lewis, D., 1954. The reduction of sulphate in the rumen of the sheep, Biochem. J. 56:391–399.

    PubMed  CAS  Google Scholar 

  • London, J., and Rittenberg, S. C., 1964. Path of sulfur in sulfide and thiosulfate oxidation by thiobacilli, Proc. Natl. Acad. Sci. USA 52:1183–1190.

    PubMed  CAS  Google Scholar 

  • Lukaszkiewicz, Z., and Pieniazek, N. J., 1972. Mutations increasing specificity of sulfate permease in Aspergillus nidulans, Bull. Acad. Pol. Sci. 20:833–836.

    CAS  Google Scholar 

  • Mangum, J. H., and Scrimgeour, K. G., 1962. Cofactor requirement and intermediates in methionine biosynthesis, Fed. Proc. 21:242.

    Google Scholar 

  • Marzluf, G. A., 1970. Genetic and biochemical studies of distinct sulfate permease species in different developmental stages of Neurospora crassa, Arch. Biochem. Biophys. 138:254–263.

    PubMed  CAS  Google Scholar 

  • Marzluf, G. A., 1972. Control of synthesis activity and turnover of enzymes of sulfur metabolism in Neurospora crassa, Arch. Biochem. Biophys. 150:714–724.

    PubMed  CAS  Google Scholar 

  • McCready, R. G. L., 1975. Sulfur isotope fractionation by Desulfovibrio and Desulfoto-maculum species, Geochim. Cosmochim. Acta 39:1395–1401.

    CAS  Google Scholar 

  • Metzenberg, R. L., 1972. Genetic regulatory systems in Neurospora, Annu. Rev. Genet. 6:111–132.

    PubMed  CAS  Google Scholar 

  • Millet, J., 1955. Le sulfite comme intermédiaire dans la réduction du sulfate par Desulfovibrio desulfuricans, C. R. Acad. Sci. 240:253–255.

    CAS  Google Scholar 

  • Milner, L., Whitfield, C., and Weissbach, H., 1969. Effect of L-methionine and vitamin B12 on methionine biosynthesis in Escherichia coli, Arch. Biochem. Biophys. 133:413–419.

    PubMed  CAS  Google Scholar 

  • Milton, J., 1667. Paradise Lost, Book 1, 44-69; 227-237 (see, e.g., editions of John Sharpe, London, 1816; A. Spottiswoode, London, 1842; Mentor Books, New York, 1961).

    Google Scholar 

  • Mitchell, P., 1970. Membranes of cells and organelles: morphology, transport, and metabolism, in Organization and Control in Prokaryotic and Eukaryotic Cells (H. P. Charles and B. C. J. G. Knight, eds.), Cambridge University Press, Cambridge, p. 121.

    Google Scholar 

  • Miyajima, R., and Shiio, I., 1973. Regulation of aspartate family amino acid biosynthesis in Brevibacteriumflavum. VII. Properties of homoserine O-transacetylase, J. Biochem. (Tokyo) 73:1061–1068.

    CAS  Google Scholar 

  • Moore, D. P., Thompson, J. F., and Smith, I. K., 1969. Utilization of S-methylcysteine and methylmercaptan by methionineless mutants of Neurospora and the pathway of their conversion to methionine. I. Growth studies, Biochim. Biophys. Acta 184:124–129.

    PubMed  CAS  Google Scholar 

  • Moriarty, D. J. W., and Nicholas, D. J. D., 1969. Enzymic sulfide oxidation by Thiobacillus concretivorus, Biochim. Biophys. Acta 184:114–123.

    PubMed  CAS  Google Scholar 

  • Moriarty, D. J. W., and Nicholas, D. J. D., 1970. Products of sulfide oxidation in extracts of Thiobacillus concretivorus, Biochim. Biophys. Acta 197:143–151.

    PubMed  CAS  Google Scholar 

  • Morningstar, J. F., Jr., and Kisliuk, R. L., 1965. Interrelations between two pathways of methionine biosynthesis in Aerobacter oerogenes, J. Gen. Microbiol. 39:43–51.

    PubMed  CAS  Google Scholar 

  • Murooka, Y., Seto, K., and Harada, T., 1970. O-Alkylhomoserine synthesis from O-ace-tylhomoserine and alcohol, Biochem. Biophys. Res. Commun. 41:407–414.

    PubMed  CAS  Google Scholar 

  • Murphy, J. T., and Spence, K. D., 1972. Transport of S-adenosylmethionine in Saccha-romyces cerevisiae, J. Bacteriol. 109:499–504.

    PubMed  CAS  Google Scholar 

  • Murphy, M. J., Siegel, L. M., Kamin, H., DerVartanian, D. V., Lee, J. P., Le Gall, J., and Peck, H. D., 1973. An iron tetrahydroporphyrin prosthetic group common to both assimilatory and dissimilatory sulfite reductases, Biochem. Biophys. Res. Commun. 54:82–88.

    PubMed  CAS  Google Scholar 

  • Nagai, S., and Flavin, M., 1967. Acetyl homoserine. Intermediate in the fungal biosynthesis of methionine, J. Biol. Chem. 242:3884–3895.

    PubMed  CAS  Google Scholar 

  • Nagai, S., and Flavin, M., 1971. Synthesis of O-acetylhomoserine, in Methods in Enzy-mology, Vol. 17B (S. P. Colowick, ed.), Academic Press, New York, pp. 423–424.

    Google Scholar 

  • Naiki, N., 1965. Some properties of sulfite reductase from yeast, Plant and Cell Physiol. 6:179–194.

    CAS  Google Scholar 

  • Nakayama, K., Kase, H., and Kinoshita, S., 1969. Accumulation of O-acetyl-L-homoserine, an intermediate in methionine biosynthesis, by methionine auxotrophs of Arthrobacter and Bacillus species, Agric. Biol. Chem. 33:1664–1665.

    CAS  Google Scholar 

  • Nicolson, G. L., and Schmidt, G. L., 1971. Structure of the Chromatium sulfur particle and its protein membrane, J. Bacteriol. 105:1142–1148.

    PubMed  CAS  Google Scholar 

  • Ohmori, H., Sato, K., Shimizu, K., and Fukui, S., 1971. Corrinoids and porphyrins in Streptomycetes. IV. Confirmation of a cobalalamin-dependent methionine synthesizing system in Streptomyces olivaceus, Agric. Biol. Chem. 35:338–343.

    CAS  Google Scholar 

  • Okazaki, T., Nakazawa, A., and Hayaishi, O., 1968. Interaction between regulatory enzymes and effectors. II. Effect of adenosine 5′-monophosphate analogs on glycogen phosphorylase b, J. Biol. Chem. 243:5266–5271.

    PubMed  CAS  Google Scholar 

  • Owens, L. D., Thompson, J. F., Pitcher, J. F., and Williams, T., 1972. Structure of rhi-zobitoxine, an antimetabolic enol-ether amino acid from Rhizobium (japonicum), J. Chem. Soc, Chem. Commun. 1972:714.

    Google Scholar 

  • Ozaki, H., and Shiio, I., 1982. Methionine biosynthesis in Brevibacteriumflavum: Properties and essential role of O-acetylhomoserine sulfhydrylase, J. Biochem. (Tokyo) 91:1163–1171.

    CAS  Google Scholar 

  • Pardee, A. B., 1966. Purification and properties of a sulfate-binding protein from Salmonella typhimurium, J. Biol. Chem. 241:5886–5892.

    PubMed  CAS  Google Scholar 

  • Pardee, A. B., 1967. Crystallization of a sulfate-binding protein (permease) from Salmonella typhimurium, Science 156:1627–1628.

    PubMed  CAS  Google Scholar 

  • Pardee, A. B., and Watanabe, K., 1968. Location of sulfate-binding protein in Salmonella typhimurium, J. Bacteriol. 96:1049–1054.

    PubMed  CAS  Google Scholar 

  • Pasternak, C. A., Ellis, R. J., Jones-Mortimer, M. C., and Crichton, C. E., 1965. Control of sulphate reduction in bacteria, Biochem. J. 96:270–275.

    PubMed  CAS  Google Scholar 

  • Paszewski, A., and Grobski, J., 1973. ß-Cystathionase and O-acetylhomoserine sulfhydry-lase as the enzymes of alternative methionine biosynthesis pathways in Aspergillus nidulans, Acta Biochim. Pol. 20:159–168.

    PubMed  CAS  Google Scholar 

  • Peck, H. D., 1968. Energy-coupling mechanisms in chemolithotrophic bacteria, Annu. Rev. Microbiol. 22:489–518.

    PubMed  CAS  Google Scholar 

  • Peck, H. D., 1974. Sulfation linked to ATP cleavage, in The Enzymes, Vol. 10, 3rd Ed. (P. D. Boyer, ed.), Academic Press, New York, pp. 651–659.

    Google Scholar 

  • Peck, H. D., and Le Gall, J., 1982. Biochemistry of dissimilatory sulphate reduction, Philos. Trans. R. Soc. London, Ser. B 298:443–466.

    CAS  Google Scholar 

  • Peck, H. D., Deacon, T. E., and Davidson, J. T., 1965. Studies on adenosine 5′-phospho-sulfate reductase from Desulfovibrio desulfuricans and Thiobacillus thioparus, Biochim. Biophys. Acta 96:429–446.

    PubMed  CAS  Google Scholar 

  • Petushkova, Yu. P., and Ivanovskii, R. N., 1976a. Sulfite oxidation by Thiocapsa roseo-persicina, Mikrobiologiya 45:592–597.

    CAS  Google Scholar 

  • Petushkova, Yu. P., and Ivanovskii, R. N., 1976b. Enzymes involved in thiosulfate metabolism in Thiocapsa roseopersicina during various growth conditions, Mikrobiologiya 45:960–965.

    CAS  Google Scholar 

  • Pfennig, N., 1978. General physiology and ecology of photosynthetic bacteria, in The Photosynthetic Bacteria (R. K. Clayton and W. R. Sistrom, eds.), Plenum, New York/London, pp. 3–18.

    Google Scholar 

  • Pfennig, N., and Biebl, H., 1976. De sulfuromonas acetoxidans gen. nov. and sp. nov., a new anaerobic, sulfur-reducing, acetate-oxidizing bacterium, Arch. Microbiol. 110:3–12.

    PubMed  CAS  Google Scholar 

  • Pfennig, N., and Widdel, F., 1982. The bacteria of the sulfur cycle, Philos. Trans. R. Soc. London, Ser. B 298:433–441.

    CAS  Google Scholar 

  • Pieniazek, N.J., Stepien, P. P., and Paszweski, A., 1973. Aspergillus nidulans mutant lacking cystathionine ß-synthase. Identity of L-serine sulfhydrylase with cystathionine ß-synthase and its distinctness from O-acetyl-L-serine sulfhydrylase, Biochim. Biophys. Acta 291:37–47.

    Google Scholar 

  • Postgate, J. R., 1959. Sulfate reduction by bacteria, Annu. Rev. Microbiol. 13:505–520.

    Google Scholar 

  • Postgate, J. R., 1960. The economic activities of sulphate-reducing bacteria, Prog. Ind. Microbiol. 2:48–69.

    Google Scholar 

  • Postgate, J. R., 1965. Recent advances in the study of the sulfate-reducing bacteria, Bac-teriol. Rev. 29:425–441.

    CAS  Google Scholar 

  • Postgate, J. R., 1984. The Sulphate-Reducing Bacteria, 2nd Ed., Cambridge University Press, Cambridge, 224 pp.

    Google Scholar 

  • Postgate, J. R., and Hunter, J. R., 1962. The survival of starved bacteria, J. Gen. Microbiol. 29:233–263; errata, J. Gen. Microbiol. (1964) 34:473.

    PubMed  CAS  Google Scholar 

  • Ragland, J. B., 1959. The role of ATP-sulfurylase in the biosynthesis of cysteine and methionine by Neurospora, Arch. Biochem. Biophys. 84:541–542.

    PubMed  CAS  Google Scholar 

  • Ralph, B. J., 1979. Oxidative reactions in the sulfur cycle, in Biogeochemical Cycling of Mineral-Forming Elements (P. A. Trudinger and D. J. Swaine, eds.), Elsevier, Amsterdam, pp. 369–400.

    Google Scholar 

  • Rees, C. E., 1973. Steady-state model for sulfur isotope fractionation in bacterial reduction processes, Geochim. Cosmochim. Acta 37:1141–1162.

    CAS  Google Scholar 

  • Robbins, P. W., and Lipmann, F., 1958a. Separation of the two enzymatic phases in active sulfate synthesis, J. Biol. Chem. 233:681–685.

    PubMed  CAS  Google Scholar 

  • Robbins, P. W., and Lipmann, F., 1958b. Enzymatic synthesis of adenosine-5′-phospho-sulfate, J. Biol. Chem. 233:686–690.

    PubMed  CAS  Google Scholar 

  • Roberts, K. R., and Marzluf, G. A., 1971. Specific interaction of chromate with dual sulfate permease systems of Neurospora crassa, Arch. Biochem. Biophys. 152:651.

    Google Scholar 

  • de Robichon-Szulmajster, H., and Surdin-Kerjan, Y., 1971. Nucleic acid and protein synthesis in yeasts. Regulation of synthesis and activity, in The Yeasts, Vol. 2 (A. H. Rose and J. S. Harrison, eds.), Academic Press, New York, pp. 335–418.

    Google Scholar 

  • Ron, E. Z., and Shain, M., 1971. Growth rate of Escherichia coli at elevated temperatures. Reversible inhibition of homoserine trans-succinylase, J. Bacteriol. 107:397–400.

    CAS  Google Scholar 

  • Ross, A. J., Schoenhoff, R. L., and Aleem, M. I. H., 1968. Electron transport and coupled phosphorylation in the chemoautotroph Thiobacillus neapolitanus, Biochem. Biophys. Res. Commun. 32:301–306.

    PubMed  CAS  Google Scholar 

  • Roth, C. W., Hemfling, W. P., Conners, J. N., and Vishniac, W., 1973. Thiosulfate-and sulfide-dependent pyridine nucleotide reduction and gluconeogenesis in intact Thiobacillus neapolitanus, J. Bacteriol. 114:592-599. Rowbury, R. J., 1964. The accumulation of O-succinylhomoserine by Escherichia coli and Salmonella typhimurium, J. Gen. Microbiol. 37:171–180.

    Google Scholar 

  • Roy, A. B., 1960. The synthesis and hydrolysis of sulfate esters, Adv. Enzymol. 22:205–235.

    CAS  Google Scholar 

  • Roy, A. B., and Trudinger, P. A., 1970. The Biochemistry of Inorganic Compounds of Sulphur, Cambridge University Press, Cambridge, 400 pp.

    Google Scholar 

  • Rüdiger, H., and Jaenicke, L., 1973. Biosynthesis of methionine, Mol. Cell. Biochem. 1:157–168.

    PubMed  Google Scholar 

  • Saito, E., and Tamura, G., 1971. Studies on sulfite reducing system of algae. 2. Purification and properties of reduced methyl viologen-linked sulfite reductase from a red algae, Porphyra yezoensis, Agric. Biol. Chem. 35:491–500.

    CAS  Google Scholar 

  • Sakata, T., Hiroishi, S., and Kadota, H., 1972. Occurrence of two types of cystathionine ß-cleavage enzyme in Bacillus subtilis, Agric. Biol. Chem. 36:333–335.

    CAS  Google Scholar 

  • Salem, A. R., and Foster, M. A., 1971. Role for folic acid conjugase in the regulation of methionine synthesis by Coprinus lagopus, Biochim. Biophys. Acta 252:597–600.

    PubMed  CAS  Google Scholar 

  • Salem, A. R., and Foster, M. A., 1972. Microbial biosynthesis of methionine, Biochem. J. 127:845–853.

    PubMed  CAS  Google Scholar 

  • Salem, A. R., Pattison, J. R., and Foster, M. A., 1972. Folic acid and the methylation of homocysteine by Bacillus subtilis, Biochem. J. 126:993–1004.

    PubMed  CAS  Google Scholar 

  • Saslawsky, A. S., and Chait, S. S., 1929. The influence of the concentration of sodium chloride on several biochemical processes in the liman. Zentralbl. Bakteriol. Parasi-tenkde. (abt. 2) 77:18–21.

    Google Scholar 

  • Savin, M. A., and Flavin, M., 1972. Cystathionine synthesis in yeast. Alternative pathway for homocysteine biosynthesis, J. Bacteriol. 112:299–303.

    PubMed  CAS  Google Scholar 

  • Saxena, J., and Aleem, M. I. H., 1973. Oxidation of sulfur compounds and coupled phosphorylation in the chemoautotroph Thiobacillus neopolitanus, Can. J. Biochem. 51:560–568.

    PubMed  CAS  Google Scholar 

  • Schaeffer, W. I., and Umbreit, W. W., 1963. Phosphotidylinositol as a wetting agent in sulfur oxidation by Thiobacillus thiooxidans, J. Bacteriol. 85:492–496.

    PubMed  CAS  Google Scholar 

  • Schedel, M., and Triiper, H. G., 1979. Purification of Thiobacillus denitrificans siroheme sulfite reductase and investigation of some molecular and catalytic properties, Biochim. Biophys. Acta 568:454–466.

    PubMed  CAS  Google Scholar 

  • Schedel, M., and Trüper, H. G., 1980. Anaerobic oxidation of thiosulfate and elemental sulfur in Thiobacillus denitrificans, Arch. Microbiol. 124:205–210.

    CAS  Google Scholar 

  • Schedel, M., Vanselow, M., and Triiper, H. G., 1979. Siroheme sulfite reductase isolated from Chromatium vinosum. Purification and investigation of some of its molecular and catalytic properties, Arch. Microbiol. 121:29–36.

    CAS  Google Scholar 

  • Schiff, J. A., and Hodson, R. C., 1973. Metabolism of sulfate, Annu. Rev. Plant Physiol. 24:381–414.

    CAS  Google Scholar 

  • Schlegel, H. G., 1976. Allgemeine Mikrobiologie, 4th Ed., Thieme-Verlag, Stuttgart.

    Google Scholar 

  • Schlegel, H. G., 1981. Microorganisms involved in the nitrogen and sulfur cycles, in Biology of Inorganic Nitrogen and Sulfur (H. Bothe and A. Trebst, eds.), Springer-Verlag, Berlin, pp. 3–12.

    Google Scholar 

  • Schmidt, A., 1972a. Mechanism of photosynthetic sulfate reduction. APS-sulfotransferase from Chlorella, Arch. Microbiol. 84:77–86.

    CAS  Google Scholar 

  • Schmidt, A., 1972b. Enzyme reactions involved in photosynthetic sulfate reduction in cell-free systems of spinach chloroplasts and Chlorella, Z. Naturforsch. 27B:183–192.

    Google Scholar 

  • Schmidt, A., 1973. Sulfate reduction in a cell-free system of Chlorella—ferredoxin dependent reduction of a protein-bound intermediate by a thiosulfonate reductase, Arch. Mikrobiol. 93:29–52.

    PubMed  CAS  Google Scholar 

  • Schmidt, A., 1975a. Distribution of APS-sulfotransferase activity among higher plants, Plant Sci. Lett. 5:407–415.

    CAS  Google Scholar 

  • Schmidt, A., 1975b. Inhibition of adenosine-5′-phosphate-sulfotransferase activity from spinach, maize, and Chlorella by adenosines-monophosphate, Planta 127:93–95.

    CAS  Google Scholar 

  • Schmidt, A., 1975c. Sulfotransferase from spinach leaves using adenosine-5′-phosphosul-fate, Planta 124:267–275.

    CAS  Google Scholar 

  • Schmidt, A., 1976. Adenosine-5′-phosphosulfate sulfotransferase from spinach (Spinacea oleracea L.)—stabilization, partial-purification and properties, Planta 130:257–263.

    CAS  Google Scholar 

  • Schmidt, A., 1977a. Assimilatory sulfate reduction via 3′-phosphoadenosine-5′-phosphosulfate (PAPS) and adenosine-5′-phosphosulfate (APS) in blue-green algae, FEMS Microbiol. Lett. 1:137–140.

    CAS  Google Scholar 

  • Schmidt, A., 1977b. Protein-catalyzed isotopic exchange reaction between cysteine and sulfide in spinach leaves, Z. Naturforsch. 32C:219–225.

    CAS  Google Scholar 

  • Schmidt, A., 1977c. Adenosine-5′-phosphosulfate (APS) as sulfate donor in Rhodospirillum rubrum, Arch. Microbiol. 112:263–270.

    PubMed  CAS  Google Scholar 

  • Schmidt, A., and Christen, U., 1978. Factor-dependent sulfotransferase specific for 3′-phosphoadenosine-5′-phosphosulfate (PAPS) in Cyanobacterium synechococcus-6301, Planta 140:239–244.

    CAS  Google Scholar 

  • Schmidt, G. L., and Kamen, M. D., 1970. Variable cellular composition of Chromatium in growing cultures, Arch. Mikrobiol. 73:1–18.

    PubMed  CAS  Google Scholar 

  • Schmidt, A., and Schwenn, J. D., 1972. Mechanism of photosynthetic sulfate reduction, in Proc. 2nd Int. Cong. Photosynthesis, The Hague, G. Forti, M. Avron, and A. Melandri, eds.), Dr. W. Junk NV Publishers, The Hague, pp. 507–514.

    Google Scholar 

  • Schmidt, A., and Triiper, H. G., 1977. Reduction of adenylysulfate and 3′-phosphoadenylyl-sulfate in phototropic bacteria, Experientia 33:1008–1010.

    PubMed  CAS  Google Scholar 

  • Schmidt, A., Abrams, W. R., and Schiff, J. A., 1974. Reduction of adenosine-5′-phosphosulfate to cysteine in extracts from Chlorella and mutants blocked for sulfate reductions, Eur. J. Biochem. 47:423–434.

    PubMed  CAS  Google Scholar 

  • Schmidt, G. L., Nicolson, G. L., and Kamen, M. D., 1971. Composition of the sulfur particle of Chromatium vinosum strain D, J. Bacteriol. 105:1137–1141.

    PubMed  CAS  Google Scholar 

  • Schwenn, J. D., and Urlaub, H., 1981. Recent results on the assimilatory sulfate reduction: APS-kinase and the reduction of APS to cysteine in higher plants, in Biology of Inorganic Nitrogen and Sulfur (H. Bothe and A. Trebst, eds.), Springer-Verlag, Berlin, pp. 334–340.

    Google Scholar 

  • Scott, J. M., and Spencer, B., 1965. Sulphate transport in Aspergillus nidulans, Biochem. J. 96:78 P.

    Google Scholar 

  • Seki, Y., Kobayashi, K., and Ishimoto, M., 1979. Biochemical studies on sulfate-reducing bacteria. XV. Separation and comparison of two forms of desulfoviridin, J. Biochem. (Tokyo) 85:705–711.

    CAS  Google Scholar 

  • Selhub, J., Burton, E., and Sakami, W., 1969. Identification of three enzymes specifically involved in the de novo methionine methyl biosynthesis of N. crassa, Fed. Proc. 28:352.

    Google Scholar 

  • Selhub, J., Savin, M. A., Sakami, W., and Flavin, M., 1971. Synchronization of converging metabolic pathways: Activation of the cystathionine γ-synthase of Neurospora crassa by methyltetrahydrofolate, Proc. Natl. Acad. Sci. USA 68:312–314.

    PubMed  CAS  Google Scholar 

  • Sentenac, A., and Fromageot, P., 1964. La sérinehydrolyase de l’oiseau mise. En évidence dans l’embryon et mécanisme d’action, Biochim. Biophys. Acta 81:289–300.

    CAS  Google Scholar 

  • Siegel, L. M., 1975. Biochemistry of the sulfur cycle, in Metabolic Pathways, Vol. VII, Metabolism of Sulfur Compounds, 3rd Ed. (D. M. Greenberg, ed.), Academic Press, New York, pp. 217–286.

    Google Scholar 

  • Siegel, L. M., 1978. Structure and function of siroheme and siroheme enzymes, in Mechanisms of Oxidizing Enzymes (T. P. Singer and R. N. Ondarza, eds.), Elsevier, New York, pp. 201–214.

    Google Scholar 

  • Siegel, L. M., and Davis, P. S., 1974. Reduced nicotinamide adenine dinucleotide phosphate-sulphite reductase of enterobacteria. 4. Escherichia coli hemoflavoprotein. Subunit structure and dissociation into hemoprotein and flavoprotein components, J. Biol. Chem. 249:1587–1598.

    PubMed  CAS  Google Scholar 

  • Siegel, L. M., and Monty, K. J., 1964. Kinetic properties of the TPNH-specific sulfite and hydroxy lamine reductase of Salmonella typhimurium, Biochem. Biophys. Res. Commun. 17:201–205.

    PubMed  CAS  Google Scholar 

  • Siegel, L. M., Kamin, H., Rueger, D. C., Presswood, R. P., and Gibson, Q. H., 1971. Iron-free sulfite reductase flavoprotein from mutants of Salmonella typhimurium, in Flavins and Flavoproteins, Proceedings of Int. Symp., 3rd (H. Kamin, ed.), University Park Press, Baltimore, Maryland, pp. 523–554.

    Google Scholar 

  • Siegel, L. M., Murphy, M. J., and Kamin, H., 1974. Reduced nicotinamide adenine dinucleotide phosphate-sulfite reductase of enterobacteria, J. Biol. Chem. 249:1610–1614.

    PubMed  Google Scholar 

  • Sieker, L. C., Adman, E., and Jensen, L. H., 1971. Structure of the FeS complex in a bacterial ferredoxin, Nature 235:40–42.

    Google Scholar 

  • Silver, M., and Lundgren, D. G., 1968. Sulfur-oxidizing enzyme of Ferrobacillus ferroox-idans (Thiobacillus ferrooxidans), Can. J. Biochem. 46:457–561.

    PubMed  CAS  Google Scholar 

  • Skyring, G. W., and Trudinger, P. A., 1972. A method for the electrophoretic characterization of sulfite reductases in crude preparations from sulfate-reducing bacteria using polyacrylamide gels, Can. J. Biochem. 50:1145–1148.

    PubMed  CAS  Google Scholar 

  • Skyring, G. W., and Trudinger, P. A., 1973. A comparison of the electrophoretic properties of the ATP-sulfurylases, APS-reductases, and sulfite reductases from cultures of dissimilatory sulfate-reducing bacteria, Can. J. Microbiol. 19:375–380.

    PubMed  CAS  Google Scholar 

  • Smith, D. A., 1971. S-Amino acid metabolism and its regulation in Escherichia coli and Salmonella typhimurium, Adv. Genet. 16:141–165.

    PubMed  CAS  Google Scholar 

  • Spencer, B., Hussey, E. C., Orsi, B. A., and Scott, J. M., 1968. Mechanism of choline O-sulphate utilization in fungi, Biochem. J. 106:461–469.

    PubMed  CAS  Google Scholar 

  • Starkey, R. L., 1960/61. Sulfate-reducing bacteria—physiology and practical significance, in Lectures on Theoretical and Applied Aspects of Modern Microbiology, University of Maryland Press, University Park, Maryland.

    Google Scholar 

  • Starkey, R. L., and Wight, K. M., 1945. Anaerobic Corrosion of Iron in Soil, American Gas. Assn., New York.

    Google Scholar 

  • Suzuki, I., and Silver, M., 1966. The initial product and properties of the sulfur-oxidizing enzyme of Thiobacilli, Biochim. Biophys. Acta 122:22–33.

    PubMed  CAS  Google Scholar 

  • Tabor, H., and Tabor, C. W., 1972. Biosynthesis and metabolism of 1,4-diaminobutane, spermidine, spermine, and related amines, Adv. Enzymol. 36:203–268.

    PubMed  CAS  Google Scholar 

  • Tamura, G., 1965. Studies on sulfite reducing system of higher plants. 2. Purification and properties of sulfite reductase from Allium odorum, J. Biochem. (Tokyo) 57:207–214.

    CAS  Google Scholar 

  • Taylor, B. F., 1968. Oxidation of elemental sulfur by an enzyme system from Thiobacillus neapolitanus, Biochim. Biophys. Acta 170:112–122.

    PubMed  CAS  Google Scholar 

  • Taylor, R. T., and Weissbach, H., 1973. N5-Methyltetrahydrofolate-homocysteine methyltransferases, in The Enzymes, Vol. 9, 3rd Ed. (P. D. Boyer, ed.), Academic Press, New York, pp. 121–165.

    Google Scholar 

  • Teas, H. J., Horowitz, N. H., and Fling, M., 1948. Homoserine as a precursor of threonine and methionine in Neurospora, J. Biol. Chem. 172:651–658.

    PubMed  CAS  Google Scholar 

  • Temple, K. L., 1964. Syngenesis of sulfide ores: An evaluation of biochemical aspects, Econ. Geol. 59:1473–1491.

    CAS  Google Scholar 

  • Thauer, R. K., Jungermann, K., and Decker, K., 1977. Energy conservation in chemotrophic anaerobic bacteria, Bacteriol. Rev. 41:100–180.

    PubMed  CAS  Google Scholar 

  • Thenen, S. W., and Stokstad, E. L. R., 1973. Effect of methionine on specific folate coenzyme pools in vitamin B12 deficient and supplemented rats, J. Nutr. 103:363–370.

    PubMed  CAS  Google Scholar 

  • Tokuno, S., Strauss, B., and Tsuda, Y., 1962. Gene interactions affecting methionine biosynthesis and the response to S-methylcysteine by mutants of Neurospora crassa, J. Gen. Microbiol. 28:481–491.

    PubMed  CAS  Google Scholar 

  • Torii, K., and Bandurski, R. S., 1964. A possible intermediate in reduction of 3′-phosphoryl-5′-adenosinephosphosulfate to sulfite, Biochem. Biophys. Res. Commun. 14:537–542.

    PubMed  CAS  Google Scholar 

  • Torii, K., and Bandurski, R. S., 1967. Yeast sulfate-reducing system. 3. An intermediate in reduction of 3′-phosphoryl-5′-adenosinephosphosulfate to sulfite, Biochim. Biophys. Acta 136:286–295.

    PubMed  CAS  Google Scholar 

  • Torma, A. E., 1977. The role of Thiobacillus ferrooxidans in hydrometallurgical processes, Adv. Biochem. Eng. 6:1–37.

    CAS  Google Scholar 

  • Trudinger, P. A., 1967. Metabolism of inorganic sulfur compounds by thiobacilli, Rev. Pure Appl. Chem. 17:1–24.

    CAS  Google Scholar 

  • Trudinger, P. A., 1969. Assimilatory and dissimilatory metabolism of inorganic sulphur compounds by micro-organisms, Adv. Microb. Physiol. 3:111–158.

    CAS  Google Scholar 

  • Trudinger, P. A., 1971. Microbes, metals, and minerals, Miner. Sci. Eng. 3:13–25.

    CAS  Google Scholar 

  • Trudinger, P. A., 1976. Microbiological processes in relation to ore genesis, in Handbook of Stratabound and Stratiform Ore Deposits (K. H. Wolf, ed.), Elsevier, Amsterdam, pp. 135–190.

    Google Scholar 

  • Trudinger, P. A., and Loughlin, R. E., 1981. Metabolism of simple sulfur compounds, in Comprehensive Biochemistry, Vol. 19A (M. Florkin and E. H. Stotz, eds.), Elsevier, Amsterdam, pp. 165–256.

    Google Scholar 

  • Trudinger, P. A., Lambert, I. B., and Skyring, C. W., 1972. Biogenic sulfide ores: A feasibility study, Econ. Geol. 67:1114–1127.

    CAS  Google Scholar 

  • Trudinger, P. A., Swaine, D. J., and Skyring, G. W., 1982. Biogeochemical cycling of elements—general considerations, in Biogeochemical Cycling of Mineral-Forming Elements (P. A. Trudinger and D. J. Swaine, eds.), Elsevier, Amsterdam, pp. 1–27.

    Google Scholar 

  • Trüper, H. G., 1981. Photolithotrophic sulfur oxidation, in Biology of Inorganic Nitrogen and Sulfur (Conf.) (H. Bothe and A. Trebst, eds.), Springer, Berlin, pp. 199–211.

    Google Scholar 

  • Trüper, H. G., 1982. Microbial processes in the sulfur cycle through time, in Mineral Deposits and the Evolution of the Biosphere (H. D. Holland and M. Schidlowski, eds.), Springer, Berlin, pp. 5–30.

    Google Scholar 

  • Trüper, H. G., 1984a. Microorganisms and the sulfur cycle, in Sulfur, Its Significance for Chemistry, for the Geo-, Bio-, and Cosmosphere and Technology (A. Müller and B. Krebs, eds.), Studies in Inorganic Chemistry 5:351–365.

    Google Scholar 

  • Trüper, H. G., 1984b. Prototrophic bacteria and their sulfur metabolism, in Sulfur, Its Significance for Chemistry, for the Geo-, Bio-, and Cosmosphere and Technology (A. Müller and B. Krebs, eds.), Studies in Inorganic Chemistry 5:367–382.

    Google Scholar 

  • Trüper, H. G., and Fischer, U., 1982. Anaerobic oxidation of sulfur compounds as electron donors for bacterial photosynthesis, Philos. Trans. R. Soc. London, Ser. B 298:529–542.

    Google Scholar 

  • Trüper, H. G., and Hathaway, J. C., 1967. Orthorhombic sulphur formed by photosynthetic sulphur bacteria, Nature 215:435–436.

    PubMed  Google Scholar 

  • Tsang, M. L.-S., and Schiff, J. A., 1975a. Studies of sulfate utilization by algae. 14. Distribution of adenosine-3′-phosphate-5′-phosphosulfate (PAPS) and adenosine-5′-phos-phosulfate (APS) sulfotransferases in assimilatory sulfate reducers, Plant Sci. Lett. 4:301–307.

    CAS  Google Scholar 

  • Tsang, M. L.-S., and Schiff, J. A., 1975b. Two patterns of assimilatory sulfate reduction in photosynthetic and non-photosynthetic organisms, Plant Physiol. 56:S36.

    Google Scholar 

  • Tsang, M. L.-S., and Schiff, J. A., 1975c. Sulfate-reducing pathway in Escherichia coli involving bound intermediates, J. Bacteriol. 125:923–933.

    Google Scholar 

  • Tsang, M. L.-S., and Schiff, J. A., 1976a. Studies of sulfate utilization by algae. 17. Reactions of adenosine-5′-phosphate (APS) sulfotransferase from Chlorella and studies of model reactions which explain diversity of side products with thiols, Plant Cell Physiol. 17:1209–1220.

    CAS  Google Scholar 

  • Tsang, M. L.-S., and Schiff, J. A., 1976b. Properties of enzyme fraction A from Chlorella and copurification of 3′(2′),5′-bisphosphonucleoside 3′(2′)-phosphohydrolase, adenosine 5′-phosphosulfate sulfohydrolase and adenosine-5′-phosphosulfate cyclase activities, Eur. J. Biochem. 65:113–121.

    CAS  Google Scholar 

  • Tsang, M. L.-S., and Schiff, J. A., 1978. Studies of sulfate utilization by algae 18. Identification of glutathione as a physiological carrier in assimilatory sulfate reduction by Chlorella, Plant. Sci. Lett. 11:177–183.

    CAS  Google Scholar 

  • Tweedie, J. W., and Segel, I. H., 1970. Specificity of transport processes for sulfur, selenium and molybdenum anions by filamentous fungi, Biochim. Biophys. Acta 196:95–106.

    PubMed  CAS  Google Scholar 

  • Tweedie, J. W., and Segel, I. H., 1971a. Adenosine triphosphate sulfurylase from Pénicillium chrysogenum. 2. Physical, kinetic, and regulatory properties, J. Biol. Chem. 246:2438–2446.

    PubMed  CAS  Google Scholar 

  • Tweedie, J. W., and Segel, I. H., 1971b. ATP-sulfurylase from Pénicillium chrysogenum. 1. Purification and characterization, Prep. Biochem. 1:91–117.

    PubMed  CAS  Google Scholar 

  • Vallée, M., 1969. Sulfate transport system of Chlorella pyrenoidosa and its regulation. 4. Studies with chromate, Biochim. Biophys. Acta 173:486–500.

    PubMed  Google Scholar 

  • Waldschmidt, M., 1962. Vergleich des Einbaues von 35S-Sulfid und 35S-Sulfat in das Kör-pereiweiss von Ratten, Biochem. Z. 335:400–407.

    PubMed  CAS  Google Scholar 

  • Ware, D. A., and Postgate, J. R., 1971. Physiological and chemical properties of a reductant-activated inorganic pyrophosphatase from Desulfovibrio de sulfuric ans, J. Gen. Microbiol. 67:145–160.

    PubMed  CAS  Google Scholar 

  • Weissbach, H., and Taylor, R. T., 1970. Roles of vitamin B12 and folic acid in methionine synthesis, Vitam. Horm. 28:415–440.

    PubMed  CAS  Google Scholar 

  • Wheldrake, J. F., and Pasternak, C. A., 1965. Control of sulphate activation in bacteria, Biochem. J. 96:276–280.

    PubMed  CAS  Google Scholar 

  • Whitfield, C. D., Steers, E. J., Jr., and Weissbach, H., 1970. Purification and properties of 5-methyltetrahydropteroyltriglutamate-homocysteine transmethylase, J. Biol. Chem. 245:390–401.

    PubMed  CAS  Google Scholar 

  • Wilson, L. G., and Bandurski, R. S., 1958. Enzymatic reactions involving sulfate, sulfite, selenate, and molybdate, J. Biol. Chem. 233:975–981.

    PubMed  CAS  Google Scholar 

  • Wilson, L. G., Asahi, T., and Bandurski, R. S., 1961. Yeast sulfate-reducing system. 1. Reduction of sulfate to sulfite, J. Biol. Chem. 236:1822–1829.

    PubMed  CAS  Google Scholar 

  • Wolfe, R. S., and Pfennig, N., 1977. Reduction of sulfur by Spirillum 5175 and syntrophism with Chlorobium, Appl. Environ. Microbiol. 33:427–433.

    PubMed  CAS  Google Scholar 

  • Xavier, A. V., Moura, J. J. G., Le Gall, J., and DerVartanian, D. V., 1979. Oxidation reduction potentials of the hemes in cytochrome c3 from D. gigas in the presence and absence of ferredoxin by EPR spectroscopy, Biochimie 61:689–695.

    PubMed  CAS  Google Scholar 

  • Yagi, T., Honya, M., and Tamiya, N., 1968. Purification and properties of hydrogenases of different origins, Biochim. Biophys. Acta 153:699–705.

    PubMed  CAS  Google Scholar 

  • Yagi, T., Inokuchi, H., and Kimura, K., 1983. Cytochrome c3, a tetrahemoprotein electron carrier found in sulfate-reducing bacteria, Acc. Chem. Res. 16:2–7.

    CAS  Google Scholar 

  • Yoshimoto, A., and Sato, R., 1968a. Studies on yeast sulfite reductase. 1. Purification and characterization, Biochim. Biophys. Acta 153:555–575.

    PubMed  CAS  Google Scholar 

  • Yoshimoto, A., and Sato, R., 1968b. Studies on yeast sulfite reductase. 2. Partial purification and properties of genetically incomplete sulfite reductases, Biochim. Biophys. Acta 153:576–588.

    PubMed  CAS  Google Scholar 

  • Yoshimoto, A., Nakamura, T., and Sata, R., 1961. Sulfite reductase from Aspergillis nidulans, J. Biochem. (Tokyo) 50:553–554.

    CAS  Google Scholar 

  • Zubieta, J. A., Mason, R., and Postgate, J. R., 1973. A four-iron ferredoxin from Desulfovibrio de sulfuric ans, Biochem. J. 133:851–854.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Science+Business Media New York

About this chapter

Cite this chapter

Huxtable, R.J. (1986). The Reduction of Sulfate and the Oxidation of Sulfide. In: Biochemistry of Sulfur. Biochemistry of the Elements, vol 6. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9438-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9438-0_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9440-3

  • Online ISBN: 978-1-4757-9438-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics