Skip to main content

Microbial Nickel Metabolism

  • Chapter

Part of the book series: Biochemistry of the Elements ((BOTE,volume 12))

Abstract

As described in Chapters 3–6, four nickel-dependent enzymes have been isolated and characterized from various microorganisms—urease, hydrogenase, CO dehydrogenase, and methyl coenzyme M reductase. In addition, specific accessory proteins have been identified as being involved in the functional incorporation of nickel ion into urease and hydrogenase. Intracellular nickel processing functions may also be needed for nickel metallocenter assembly in CO dehydrogenase and for the synthesis of the nickel-containing coenzyme F430, a component of methyl coenzyme M reductase. These aspects of microbial nickel metabolism will not be repeated here. Rather, this chapter will focus on nickel ion transport into the microbial cell, nickel ion toxicity and resistance mechanisms in microbes, and other features related to microbial nickel metabolism.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abelson, P. H., and Aldous, E., 1950. Ion antagonisms in microorganisms: Interference of normal magnesium metabolism by nickel, cobalt, cadmium, zinc, and manganese, J. Bacteriol. 60: 401–413.

    CAS  PubMed  Google Scholar 

  • Adiga, P. R., Sastry, K. S., Venkatasubramanyam, V., and Sarma, P. S., 1961. Interrelationships in trace-element metabolism in Aspergillus niger, Biochem. J. 81: 545–550.

    CAS  PubMed  Google Scholar 

  • Andronikashvili, E. L., Bregadze, V. G., and Monaselidze, J. R., 1988. Interactions between nickel and DNA: Considerations about the role of nickel in carcinogenesis, in Nickel and Its Role in Biology (H. Sigel and A. Sigel, eds.), Metal Ions in Biological Systems, Vol. 23, Marcel Dekker, New York, pp. 331–367.

    Google Scholar 

  • Babich, H., and Stotzky, G., 1983. Toxicity of nickel to microbes: Environmental aspects, Adv. Appl. Microbiol. 29: 195–265.

    Article  CAS  PubMed  Google Scholar 

  • Bartha, R., and Ordal, E. J., 1965. Nickel-dependent chemolithotrophic growth of two Hydrogenomonas strains, J Bacteriol. 89: 1015–1019.

    CAS  PubMed  Google Scholar 

  • Baudet, C., Sprott, G. D., and Patel, G. B., 1988. Adsorption and uptake of nickel in Methanothrix concilii, Arch. Microbiol. 150: 338–342.

    Article  CAS  Google Scholar 

  • Bertrand, D., and de Wolf, A., 1967. Le nickel, oligoélément dynamique pour les végétaux supérieurs, C. R. Acad. Sci. 265: 1053–1055.

    CAS  Google Scholar 

  • Biggart, N. W., and Costa, M., 1986. Assessment of the uptake and mutagenicity of nickel chloride in Salmonella tester strains, Mutat. Res. 175: 209–215.

    Article  CAS  PubMed  Google Scholar 

  • Bryson, M. F., and Drake, H. L., 1988. Energy-dependent transport of nickel by Clostridium pasteurianum, J. Bacteriol. 170: 234–238.

    CAS  PubMed  Google Scholar 

  • Butzow, J. J., and Eichhorn, G. L., 1965. Interactions of metal ions with polynucleotides and related compounds. IV. Degradation of polyribonucleotides by zinc and other divalent metal ions, Biopolymers 3: 95–107.

    Article  CAS  PubMed  Google Scholar 

  • Campbell, P. M., and Smith, G. D., 1986. Transport and accumulation of nickel ions in the cyanobacterium Anabaena cylindrica, Arch. Biochem. Biophys. 244: 470–477.

    Article  CAS  PubMed  Google Scholar 

  • Daday, A., Mackerras, A.,H., and Smith, G. D., 1988. A role for nickel in cyanobacterial nitrogen fixation and growth via cyanophycin metabolism, J. Gen. Microbiol. 134: 2659–2663.

    CAS  Google Scholar 

  • Eberz, G., Eitinger, T., and Friedrich, B., 1989. Genetic determinants of a nickel-specific transport system are part of a plasmid-encoded hydrogenase gene cluster in Alcaligenes eutrophus, J. Bacteriol. 171:1340–1345.

    Google Scholar 

  • Eitinger, T., and Friedrich, B., 1991. Cloning, nucleotide sequence, and heterologous expression of a high-affinity nickel transport gene from Alcaligenes eutrophus, J. Biol. Chem. 166: 32223227.

    Google Scholar 

  • Folsom, B. R., Popescu, A., Kingsley-Hickman, P. W., and Wood, J. M., 1986. A comparative study of nickel and aluminum transport and toxicity in freshwater green algae, in Frontiers in Bioinorganic Chemistry ( A. V. Xavier, ed.), VCH Publishers, New York, pp. 391–398.

    Google Scholar 

  • Fu, C., and Maier, R. J., 199la. Identification of a locus within the hydrogenase gene cluster involved in intracellular nickel metabolism in Bradyrhizobium japonicum, Appl. Environ. Microbiol. 57: 3502–3510.

    Google Scholar 

  • Fu, C., and Maier, R. J., 1991 b. Competitive inhibition of an energy-dependent nickel transport system by divalent cations in Bradyrhizobium japonicum JH, Appl. Environ. Microbiol. 57: 3511–3516.

    Google Scholar 

  • Fuhrmann, G. F., and Rothstein, A., 1968a. The transport of Zn+2, Co’, and Ni’ into yeast cells, Biochim. Biophys. Acta 163: 325–330.

    Article  CAS  PubMed  Google Scholar 

  • Fuhrmann, G. F., and Rothstein, A., 1968b. The mechanism of the partial inhibition of fermentation in yeast by nickel ions, Biochim. Biophys. Acta 163: 331–338.

    Article  CAS  PubMed  Google Scholar 

  • Gadd, G. M., and Griffiths, A. J., 1978. Microorganisms and heavy metal toxicity, Microb. Ecol. 4: 303–317.

    Article  CAS  Google Scholar 

  • Hmiel, S. P., Snavely, M. D., Miller, C. G., and Maguire, M. E., 1986. Magnesium transport in Salmonella typhimurium: Characterization of magnesium influx and cloning of a transport gene, J. Bacteriol. 168: 1444–1450.

    CAS  PubMed  Google Scholar 

  • Hmiel, S. P., Snavely, M. D., Florer, J. B., Maguire, M. E., and Miller, C. G., 1989. Magnesium transport in Salmonella typhimurium: Genetic characterization and cloning of three magnesium transport loci, J. Bacteriol. 171: 4742–4751.

    CAS  PubMed  Google Scholar 

  • Hughs, M. N., and Poole, R. K., 1991. Metal speciation and microbial growth-the hard (and soft) facts, J. Gen. Microbiol. 137: 725–734.

    Google Scholar 

  • Jarrell, K. F., and Sprott, G. D., 1982. Nickel transport in Methanobacterium bryantii, J. Bacteriol. 151: 1195–1203.

    CAS  PubMed  Google Scholar 

  • Jasper, P., and Silver, S., 1977. Magnesium transport in microorganisms, in Microorganisms and Minerals ( E. D. Weinberg, ed.), Marcel Dekker, New York, pp. 7–47.

    Google Scholar 

  • Joho, M., Imada, Y., and Murayama, T., 1987. The isolation and characterization of Ni+2 resistant mutants of Saccharomyces cerevisiae, Microbios 51:183–190.

    Google Scholar 

  • Joho, M., Inouhe, M., Tohoyama, H., and Murayama, T., 1990. A possible role of histidine in a nickel resistant mechanism of Saccharomyces cerevisiae, FEMS Microbiol. Lett. 66: 333338.

    Google Scholar 

  • Joho, M., Ishikawa, Y., Kunikane, M., Inouhe, M., Tohoyama, H., and Murayama, T., 1992. The subcellular distribution of nickel in Ni-sensitive and Ni-resistant strains of Saccharomyces cerevisiae, Microbios 71:149–159.

    Google Scholar 

  • Kaltwasser, H. and Frings, W., 1980. Transport and metabolism of nickel in microorganisms, in Nickel in the Environment (J. O. Nriagu, ed.), John Wiley & Sons, New York, pp. 463491.

    Google Scholar 

  • Kaur, P., Roß, K., Siddiqui, R. A., and Schlegel, H. G., 1990. Nickel resistance of Alcaligenes denitriftcans strain 4a-2 is chromosomally coded, Arch. Microbiol. 154: 133–138.

    Article  CAS  Google Scholar 

  • Liesegang, H., Lemke, K., Siddiqui, R. A., and Schlegel, H.-G., 1993. Characterization of the inducible nickel and cobalt resistance determinant cnr from pMOL28 ofAlcaligenes eutrophus CH34, J. Bacteriol. 175: 767–778.

    CAS  PubMed  Google Scholar 

  • Lohmeyer, M., and Friedrich, C. G., 1987. Nickel transport in Alcaligenes eutrophus, Arch. Microbi ol. 149: 130–135.

    Article  CAS  Google Scholar 

  • Lundie, L. L., Jr., Yang, H., Heinonen, J. K., Dean, S. I., and Drake, H. L., 1988. Energy-dependent, high-affinity transport of nickel by the acetogen Clostridium thermoaceticum, J. Bacteriol. 170: 5705–5708.

    CAS  PubMed  Google Scholar 

  • Maier, R. J., Pihl, T. D., Stults, L., and Sray, W., 1990. Nickel accumulation and storage in Bradyrhizobium japonicum, J. Bacteriol. 56: 1905–1911.

    CAS  Google Scholar 

  • Martin, R. B., 1988a. Nickel ion binding to amino acids and peptides, in Nickel and Its Role in Biology (H. Sigel and A. Sigel, eds.), Metal Ions in Biological Systems, Vol. 23, Marcel Dekker, New York, pp. 124–164.

    Google Scholar 

  • Martin, R. B., 1988b. Nickel ion binding to nucleosides and nucleotides, in Nickel and Its Role in Biology (H. Sigel and A. Sigel, eds.), Metal Ions in Biological Systems, Vol. 23, Marcel Dekker, New York, pp. 315–330.

    Google Scholar 

  • Mergeay, M., Nies, D., Schlegel, H. G., Gems, J., Charles, P., and van Gijsegem, F., 1985. Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals, J. Bacteriol. 162: 328–334.

    CAS  Google Scholar 

  • Mishra, D., and Kar, M., 1974. Nickel in plant growth and metabolism, Bot. Rev. 40:395–452. Mohan, P. M., and Sastry, K. S., 1983. Interrelationships in trace-element metabolism in metal toxicities in nickel-resistant strains of Neurospora crassa, Biochem. J. 212: 205–210.

    Google Scholar 

  • Mohan, P. M., Rudra, M. P. P., and Sastry, K. S., 1984. Nickel transport in nickel-resistant strains of Neurospora crassa, Curr. Microbiol. 10: 125–128.

    Google Scholar 

  • National Research Council, 1975. Nickel, National Academy of Sciences, Washington, D.C. Nies, D. H., 1992. Resistance to cadmium, cobalt, zinc, and nickel in microbes, Plasmid 27: 1728.

    Google Scholar 

  • Nies, D. H., and Silver, S., 1989. Plasmid-determined inducible efflux is responsible for resistance to cadmium, zinc, and cobalt in Alcaligenes eutrophus, J. Bacteriol. 171: 896–900.

    CAS  PubMed  Google Scholar 

  • Nies, A., Nies, D. H., and Silver, S., 1989. Cloning and expression of plasmid genes encoding resistances to chromate and cobalt in Alcaligenes eutrophus, J. Bacteriol. 171: 5065–5070.

    CAS  PubMed  Google Scholar 

  • Park, M. H., Wong, B. B., and Lusk, J. E., 1976. Mutants in three genes affecting transport of magnesium in Escherichia coli: Genetics and physiology, J. Bacteriol. 126: 1096–1103.

    CAS  PubMed  Google Scholar 

  • Richardson, D. H. S., Beckett, P. J., and Nieboer, E., 1980. Nickel in lichens, bryophytes, fungi and algae, in Nickel in the Environment ( J. O. Nriagu, ed.), John Wiley & Sons, New York, pp. 367–406.

    Google Scholar 

  • Schlegel, H. G., Cosson, J.-P., and Baker, A. J. M., 1991. Nickel-hyperaccumulating plants provide a niche for nickel-resistant bacteria, Bot. Acta 104: 18–25.

    CAS  Google Scholar 

  • Schmidt, T., and Schlegel, H. G., 1989. Nickel and cobalt resistance of various bacteria isolated from soil and highly polluted domestic and industrial wastes, FEMS Microbiol. Lett. 62: 315–328.

    Article  CAS  Google Scholar 

  • Schmidt, T., Stoppel, R. D., and Schlegel, H. G., 1991. High-level nickel resistance in Alcaligenes xylosoxydans 31A and Alcaligenes eutrophus KTO2, Appl. Environ. Microbiol. 57: 33013309.

    Google Scholar 

  • Sensfuss, C., and Schlegel, H. G., 1988. Plasmid pMOL28-encoded resistance to nickel is due to specific efflux, FEMS Microbiol. Lett. 55: 295–298.

    Article  CAS  Google Scholar 

  • Siddiqui, R. A., and Schlegel, H. G., 1987. Plasmid pMOL28-mediated inducible nickel resistance in Alcaligenes eutrophus strain CH34, FEMS Microbiol. Leu. 43: 9–13.

    Article  CAS  Google Scholar 

  • Siddiqui, R. A., Schlegel, H. G., and Meyer, M., 1988. Inducible and constitutive expression of pMOL28-encoded nickel resistance in Alcaligenes eutrophus N9A, J. Bacteriol. 170: 41884193.

    Google Scholar 

  • Siddiqui, R. A., Benthin, K., and Schlegel, H. G., 1989. Cloning of pMOL28-encoded nickel resistance genes and expression of the genes in Alcaligenes eutrophus and Pseudomonas spp., J. Bacteriol. 171:5071–5078.

    Google Scholar 

  • Silver, S., Nuciforma, G., Chu, L., and Misra, T. K., 1989. Bacterial resistance ATPases: Primary pumps for exporting cations and anions, Trends Biochem. Sci. 14: 76–80.

    Article  CAS  PubMed  Google Scholar 

  • Singh, A. L., Asthana, R. K., Srivastava, S. C., and Singh, S. P., 1992. Nickel uptake and its localization in a cyanobacterium, FEMS Microbiol. Lett. 99: 165–168.

    Google Scholar 

  • Skaar, H., Rystad, B., and Jensen, A., 1974. The uptake of “Ni by the diatom Phaeodactylum tricornutum, Physiol. Plant 32: 353–358.

    Article  CAS  Google Scholar 

  • Smith, D. H., 1967. R factors mediate resistance to mercury, nickel, and cobalt, Science 156: 114–116.

    Article  Google Scholar 

  • Snavely, M. D., Florer, J. B., Miller, C. G., and Maguire, M. E., 1989a. Magnesium transport in Salmonella typhimurium: Expression of cloned genes for three distinct Mgt+ transport systems, J. Bacteriol. 171 . 4752–4760.

    Google Scholar 

  • Snavely, M. D., Florer, J. B., Miller, C. G., and Maguire, M. E., 1989b. Magnesium transport in Salmonella typhimurium: 28Mg2+ transport by the CorA, MgtA, and MgtB systems, J. Bacteriol. 171: 4761–4766.

    CAS  PubMed  Google Scholar 

  • Snavely, M. D., Miller, C. G., and Maguire, M. E., 1991a. The mgtB Mgt+ transport locus of Salmonella typhimurium encodes a P-type ATPase, J. Biol. Chem. 266: 815–823.

    CAS  PubMed  Google Scholar 

  • Snavely, M. D., Gravina, S. A., Cheung, T. T., Miller, C. G., and Maguire, M. E., 1991b. Magnesium transport in Salmonella typhimurium. Regulation of mgtA and mgtB expression, J. Biol. Chem. 266: 824–829.

    CAS  PubMed  Google Scholar 

  • Soeder, C. J., and Engelmann, G., 1984. Nickel requirement in Chlorella emersonii, Arch. Microbiol. 137: 85–87.

    Article  CAS  Google Scholar 

  • Sprott, G. D., Jarrell, K. F., Shaw, K. M., and Knowles, R., 1982. Acetylene as an inhibitor of methanogenic bacteria, J. Gen. Microbiol. 128: 2453–2462.

    CAS  Google Scholar 

  • Stults, L. W., Mallick, S., and Maier, R. J., 1987. Nickel uptake in Bradyrhizobium japonicum, J. Bacterial. 169: 1398–1402.

    CAS  Google Scholar 

  • Tabillion, R., and Kaltwasser, H., 1977. Energieabhangige 63Ni-aufnahme bei Alcaligenes eutrophus stamm H l and H16, Arch. Microbiol. 113: 145–151.

    Article  CAS  PubMed  Google Scholar 

  • Takakuwa, S., 1987. Nickel uptake in Rhodopseudomonas capsulata, Arch. Microbiol. 149: 5761.

    Article  Google Scholar 

  • Van Baalen, C., and O’Donnell, R., 1978. Isolation of a nickel-dependent blue-green alga, J. Gen. Microbiol. 105: 351–353.

    Google Scholar 

  • Varma, A. K., Sensfuß, C., and Schlegel, H. G., 1990. Inhibitor effects on the accumulation and efflux of nickel ions in plasmid pMOL28-harboring strains of Alcaligenes eutrophus, Arch. Microbiol. 154: 42–49.

    Article  CAS  Google Scholar 

  • Webb, M., 1970a. The mechanism of acquired resistance to Co’ and Ni z in Gram-positive and Gram-negative bacteria, Biochim. Biophys. Acta 222: 440–445.

    Article  CAS  PubMed  Google Scholar 

  • Webb, M., 1970b. Interrelationships between the utilization of magnesium and the uptake of other bivalent cations by bacteria, Biochim. Biophys. Acta 222: 428–439.

    Article  CAS  PubMed  Google Scholar 

  • Wildung, R. E., Garland, T. R., and Drucker, H., 1979. Nickel complexes with soil microbial metabolites-mobility and speciation in soils, in Chemical Modeling in Aqueous Systems (A. Jenne, ed.), ACS Symposium Series No. 93, American Chemical Society, Washington, D.C., pp. 181–200.

    Google Scholar 

  • Willecke, K., Gries, E.-M., and Oehr, P., 1973. Coupled transport of citrate and magnesium in Bacillus subtilis, J. Biol. Chem. 248: 807–814.

    CAS  PubMed  Google Scholar 

  • Wolfram, L., Eitinger, T., and Friedrich, B., 1991. Construction and properties of a triprotein containing the high-affinity nickel transporter of Alcaligenes eutrophus, FEBS Lett. 283: 109112.

    Google Scholar 

  • Wu, L. F., and Mandrand-Berthelot, M.-A., 1986. Genetic and physiological characterization of new Escherichia coli mutants impaired in hydrogenase activity, Biochimie 68: 167–179.

    Article  CAS  PubMed  Google Scholar 

  • Wu, L.-F., Mandrand-Berthelot, M.-A., Waugh, R., Edmonds, C. J., and Boxer, D. H., 1989. Nickel deficiency gives rise to the defective hydrogenase phenotype of hydC and fnr mutants in Escherichia cols, Mol. Microbiol. 3: 1709–1718.

    Article  CAS  PubMed  Google Scholar 

  • Wu, L.-F., Navarro, C., and Mandrand-Berthelot, M.-A., 1991. The hydC region contains a multicistronic operon (nik) involved in nickel transport in Escherichia coli, Gene 107: 37–42.

    Article  CAS  PubMed  Google Scholar 

  • Yang, H., Daniel, S. L., Hsu, T., and Drake, H. L., 1989. Nickel transport by the thermophilic acetogen Acetogenium kivui, Appl. Environ. Microbiol. 55: 1078–1081.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hausinger, R.P. (1993). Microbial Nickel Metabolism. In: Biochemistry of Nickel. Biochemistry of the Elements, vol 12. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9435-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9435-9_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9437-3

  • Online ISBN: 978-1-4757-9435-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics