Skip to main content
  • 60 Accesses

Abstract

Study of the monocular and binocular properties of neurones in the lightly anaesthetized feline striate cortex reveals a wealth of functional interactions which potentially underpin eye convergence and interocular alignment, and the encoding of visual perspective of three-dimensional objects. Monocularly, neurones’ relative preferences for opposing directions of motion, and selectivity for range of directions, are reliant upon the spatial-frequency content of perceived scenes. Each neurone’s directionality, spatial-frequency selectivity, eye preference and length selectivity, differs according to whether input is from contralateral or ipsilateral eyes, or binocular.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baker, C.L. (1990). Spatial-and temporal-frequency selectivity as a basis for velocity preference in cat striate cortex neurones. Visual Neurosci. 4:101–114.

    Article  Google Scholar 

  • Barlow, H.B., Blakemore, C., and Pettigrew, J.D. (1967). The neural mechanism of binocular depth discrimination, J. Physiol. 193:327–342.

    PubMed  CAS  Google Scholar 

  • Bishop, P.O., Coombs, J.S. and Henry, G.H. (1971). Responses to visual contours: spatio-temporal aspects of excitation in the receptive fields of simple striate neurones, J. Physiol. 219:625–657.

    PubMed  CAS  Google Scholar 

  • Bishop, P.O., Henry, G.H. and Smith, C.J. (1971). Binocular interaction fields of single units in cat striate cortex, J. Physiol. 216:39–68.

    PubMed  CAS  Google Scholar 

  • Bisti, S., Carmignoto, G., Galli, L. and Maffei, L. (1985). Spatial frequency characteristics of neurones of area 18 in the cat: dependence on the velocity of the visual stimulus, J. Physiol. 359:259–268.

    PubMed  CAS  Google Scholar 

  • Blakemore, C. (1970). The representation of three-dimensional visual space in the cat’s striate cortex, J. Physiol. 209:155–178.

    PubMed  CAS  Google Scholar 

  • Campbell, F.W., Cooper, G.F. and Enroth-Cugell, C. (1969). The spatial selectivity of the visual cells of the cat, J. Physiol. 203:223–235.

    PubMed  CAS  Google Scholar 

  • Cynader, M. and Regan, D. (1982). Neurones in cat visual cortex tuned to the direction of motion in depth: effect of positional disparity, Vision Res. 22:967–982.

    Article  PubMed  CAS  Google Scholar 

  • Fischer, B. and Kruger, J. (1979). Disparity tuning and binocularity of single neurones in cat visual cortex, Exp. Brain Res. 35:1–8.

    Article  PubMed  CAS  Google Scholar 

  • Fothergill, L.K. and Hammond, P. (1992). Spatial frequency selectivity of striate cortical neurones in the anaesthetized cat: velocity vs. temporal frequency, J. Physiol. 452:289P.

    Google Scholar 

  • Gilbert, C.D. (1977). Laminar differences in receptive field properties of cells in cat primary visual cortex, J. Physiol. 268:391–421.

    PubMed  CAS  Google Scholar 

  • Hammond, P. (1979). Stimulus-dependence of ocular dominance and directional tuning of complex cells in area 17 of the feline visual cortex., Exp. Brain Res. 35:583–589.

    Article  PubMed  CAS  Google Scholar 

  • Hammond, P. (1991a). Letter to the Editors. On the response of simple and complex cells to random dot patterns: a reply to Skottun, Grosof and DeValois, Vision Res. 31:47–50.

    Article  PubMed  CAS  Google Scholar 

  • Hammond, P. (1991b). Binocular phase specificity of striate cortical neurones, Exp. Brain Res. 87:615–623.

    Article  PubMed  CAS  Google Scholar 

  • Hammond, P. and Ahmed, B. (1985). Length summation of complex cells in cat striate cortex: a reappraisal of the “special’7“standard” classification, Neurosci. 15, 639–649.

    Article  CAS  Google Scholar 

  • Hammond, P., Andrews, D.P. and James, C.R. (1975). Invariance of orientational and directional tuning in visual cortical cells of the adult cat, Brain Res. 96:56–59.

    Article  PubMed  CAS  Google Scholar 

  • Hammond, P. and Fothergill, L.K. (1990). Ocular dominance of striate cortical neurones in the anaesthetized cat: variation with spatial frequency, J. Physiol 430:106P.

    Google Scholar 

  • Hammond, P. and Fothergill, L.K. (1994). Cat striate cortex: monocular and interocular comparisons of spatial-frequency selectivity. Anais da Academia Brasilaira de Ciencias 66:45–113.

    Google Scholar 

  • Hammond, P. and MacKay, D.M. (1975). Differential responses of cat visual cortical cells to textured stimuli, Exp. Brain Res. 22:427–430.

    Article  Google Scholar 

  • Hammond, P. and MacKay, D.M. (1977). Differential responsiveness of simple and complex cells in cat striate cortex to visual texture, Exp. Brain Res. 30:275–296.

    PubMed  CAS  Google Scholar 

  • Hammond, P. and Mouat, G.S.V. (1986). Influence of stimulus length on directional bias of complex cells in cat striate cortex, Neurosci. 18:25–30.

    Article  CAS  Google Scholar 

  • Hammond, P. and Munden, I.M.E. (1990). Areal influences on complex cells in cat striate cortex: stimulus-specificity of width and length summation, Exp. Brain Res. 80:135–147.

    Article  PubMed  CAS  Google Scholar 

  • Hammond, P. and Pomfrett, C.J.D. (1989). Directional and orientational tuning of feline striate cortical neurones: correlation with neuronal class, Vision Res. 29:653–662.

    Article  PubMed  CAS  Google Scholar 

  • Hammond, P. and Pomfrett, C.J.D. (1990a). Directionality of cat striate cortical neurones: contribution of suppression, Exp. Brain Res. 81:417–425.

    Article  PubMed  CAS  Google Scholar 

  • Hammond, P. and Pomfrett, C.J.D. (1990b). Influence of spatial frequency on tuning and bias for orientation and direction in the cat’s striate cortex, Vision Res. 30:359–369.

    Article  PubMed  CAS  Google Scholar 

  • Hammond, P. and Pomfrett, C.J.D. (1991). Interocular mismatch in spatial frequency and directionality characteristics of striate cortical neurones, Exp. Brain Res. 85:631–640.

    Article  PubMed  CAS  Google Scholar 

  • Hammond, P. and Reck, J. (1980). Influence of velocity on directional tuning of complex cells in cat striate cortex for texture motion, Neurosci. Lett. 19:309–314.

    Article  PubMed  CAS  Google Scholar 

  • Henry, G.H. (1977). Receptive field classes of cells in the striate cortex of the cat, Brain Res. 133:1–28.

    Article  PubMed  CAS  Google Scholar 

  • Hubel, D.H. and Wiesel, T.N. (1962). Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex, J. Physiol. 160:106–154.

    PubMed  CAS  Google Scholar 

  • Ikeda, H. and Wright, M.J. (1975). Spatial and temporal properties of “sustained” and “transient” neurones in area 17 of the cat’s visual cortex, Exp. Brain Res. 22:363–384.

    Google Scholar 

  • Kulikowski, J.J. and Bishop, P.O. (1981). Linear analysis of the responses of simple cells in the cat visual cortex, Exp. Brain Res. 44:386–400.

    PubMed  CAS  Google Scholar 

  • LeVay, S. and Voigt, T. (1988). Ocular dominance and disparity coding in cat visual cortex, Visual Neurosci. 1:395–414.

    Article  CAS  Google Scholar 

  • Maffei, L. and Fiorentini, A. (1973). The visual cortex as a spatial frequency analyser, Vision Res. 13:1255–1267.

    Article  PubMed  CAS  Google Scholar 

  • Maske, R., Yamane, S. and Bishop, P.O. (1984). Binocular simple cells for local stereopsis: comparison of receptive field organization for the two eyes, Vision Res. 24:1921–1929.

    Article  PubMed  CAS  Google Scholar 

  • Movshon, J.A. (1975). The velocity tuning of single units in cat striate cortex, J. Physiol. 249:445–468.

    PubMed  CAS  Google Scholar 

  • Movshon, J.A., Thompson, I.D. and Tolhurst, D.J. (1978). Spatial and temporal contrast sensitivity of neurones in areas 17 and 18 of the cat’s visual cortex, J. Physiol. 283:101–120.

    PubMed  CAS  Google Scholar 

  • Nelson, J.I., Kato, H. and Bishop, P.O. (1977). Discrimination of orientation and position disparities by binocularly activated neurones in cat striate cortex, J. Neurophysiol 40:260–283.

    PubMed  CAS  Google Scholar 

  • Ohzawa, I. and Freeman, R.D. (1986a). The binocular organization of simple cells in the cat’s visual cortex, J. Neurophysiol. 56:221–242.

    PubMed  CAS  Google Scholar 

  • Ohzawa, I. and Freeman, R.D. (1986b). The binocular organization of complex cells in the cat’s visual cortex, J. Neurophysiol. 56:243–259.

    PubMed  CAS  Google Scholar 

  • Orban, G.A., Kennedy, H. and Maes, H. (1981). Response to movement of neurones in areas 17 and 18 of the cat: velocity sensitivity, J. Neurophysiol 45:1043–1058.

    PubMed  CAS  Google Scholar 

  • Pettigrew, J.D., Nikara, T. and Bishop, P.O. (1968). Binocular interaction on single units in cat striate cortex: simultaneous stimulation by single moving slit with receptive fields in correspondence, Exp. Brain Res. 6:391–410.

    PubMed  CAS  Google Scholar 

  • Skottun, B.C. and Freeman, R.D. (1984). Stimulus specificity of binocular cells in the cat’s visual cortex: ocular dominance and the matching of left and right eyes, Exp. Brain Res. 56:206–216.

    Article  PubMed  CAS  Google Scholar 

  • Tolhurst, D.J. and Thompson, I.D. (1981). On the variety of spatial frequency selectivities shown by neurones in area 17 of the cat, Proc. Royal Soc. B 213:183–200.

    Article  CAS  Google Scholar 

  • Vidyasagar, T.R. and Siguenza, J.A. (1985). Relationship between orientation tuning and spatial frequency in neurones of cat area 17, Exp. Brain Res. 57:628–631.

    Article  PubMed  CAS  Google Scholar 

  • von der Heydt, R., Adorjani, C., Hanny, P. and Baumgartner, G. (1978). Disparity sensitivity and receptive field incongruity of units in the cat striate cortex, Exp. Brain Res. 31:523–546.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hammond, P. (1995). Binocular Integration in the Visual Cortex. In: Robbins, J.G., Djamgoz, M.B.A., Taylor, A. (eds) Basic and Clinical Perspectives in Vision Research. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9362-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9362-8_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9364-2

  • Online ISBN: 978-1-4757-9362-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics