Skip to main content

Does PBP2 Regulate Cell Division in E. coli?

  • Chapter

Part of the book series: Federation of European Microbiological Societies Symposium Series ((FEMS,volume 65))

Abstract

Although penicillin has not made war humane, it probably saved over a million lives during World War II. The action of penicillin and related β-lactam antibiotics was early recognized to be extrmely broad, affecting the vast majority of bacterial species, and at the same time highly specific, generally producing little effect on eukaryotic cells. As the complex structure of the bacterial cell wall became known, the mechanism of action of β-lactams was also revealed: they bind covalently to the PBPs (‘penicillin binding proteins’), a set of integral membrane proteins which catalyse the terminal steps in the synthesis of the rigid peptoglycan wall (for review see Waxman and Strominger, 1983; Ghuysen, 1991).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aono, R., Yamasaki, M. and Tamura, G. (1978) Changes in composition of envelope proteins in adenylate cyclase-or cyclic AMP receptor protein-deficient mutants of Escherichia coli. J. Bacteriol. 136, 812–814.

    PubMed  CAS  Google Scholar 

  • Begg, K.J., Takasuga, A., Edwards, D.H., Edwards, J., Edwards, D.S., Spratt, B.G., Adachi, H., Ohta, T., Matsuzawa, H. and Donachie, W.D. (1990) The balance between different peptidoglycan precursors determines whether Escherichia coli cells will elongate or divide. J. Bacteriol. 172, 6697–6708.

    PubMed  CAS  Google Scholar 

  • Botta, G.A. and Park, J.T. (1981) Evidence of penicillin-binding protein 3 in murein synthesis during septation but not during cell elongation. J. Bacteriol. 145, 333–340.

    PubMed  CAS  Google Scholar 

  • Bouloc, P., Jaffé, A. and D’Ari, R. (1988) Preliminary physiologie characterization and genetic analysis of a new Escherichia coli mutant, lov, resistant to mecillinam. Rev. Infect. Dis. 10, 905–910.

    Article  PubMed  CAS  Google Scholar 

  • Bouloc, P., Jaffé, A. and D’Ari, R. (1989) The Escherichia coli lov gene product connects peptidoglycan synthesis, ribosomes and growth rate. EMBO J. 8, 317–323.

    PubMed  CAS  Google Scholar 

  • Broome-Smith, J.K. (1985) Construction of a mutant of Escherichia coli that has deletions of both the penicillin-binding protein 5 and 6 genes. J. Gen. Microbiol. 331, 2115–2118.

    Google Scholar 

  • Broome-Smith, J.K. and Spratt, B.G. (1982) Deletion of the penicillin-binding protein 6 gene of Escherichia coli. J. Bacteriol. 152, 904–906.

    PubMed  CAS  Google Scholar 

  • Buchanan, C.E. and Sowell, M.O. (1982) Synthesis of penicillin-binding protein 6 by stationary-phase of Escherichia coli. J. Bacteriol. 151, 491–494.

    PubMed  CAS  Google Scholar 

  • D’Ari, R., Jaffé, A., Bouloc, P. and Robin, A. (1988) Cyclic AMP and cell division in Escherichia coli. J. Bacteriol. 170, 65–70.

    PubMed  Google Scholar 

  • del Portillo, F.G. and de Pedro, M.A. (1991) Penicillin-Binding Protein 2 is essential for the integrity of growing cells of Escherichia coli pon Bstrains. J. Bacteriol. 173, 4530–4532.

    Google Scholar 

  • Dombou, M., Bhide, S.V. and Mizushima, S. (1981) Appearance of elongation factor Tu in the outer membrane of sucrose-dependent spectinomycin-resistant mutants of Escherichia coli. Eur. J. Biochem. 113, 397–403.

    Article  PubMed  CAS  Google Scholar 

  • Donachie, W.D. and Begg, K.J. (1989) Cell length, nucleoid separation, and cell division of rod-shaped and spherical cells of Escherichia coli. J. Bacteriol. 171, 4633–4639.

    PubMed  CAS  Google Scholar 

  • Georgopoulos, C.P. and Eisen, H. (1974) Bacterial mutants which block phage assembly. J. Supramolec. Struct. 2, 349–359.

    Article  CAS  Google Scholar 

  • Ghuysen, J.-M. (1991) Serine β-lactamases and penicillin-binding proteins. Annu. Rev. Microbiol. 45, 37–67.

    Article  PubMed  CAS  Google Scholar 

  • Glauner, B., Höltje, J.-V. and Schwarz, U. (1988) The composition of the murein of Escherichia coli. J. Biol. Chem. 263, 10088–10095.

    PubMed  CAS  Google Scholar 

  • Höltje, J.-V. and Tuomanen, E.I. (1991) The murein hydrolases of Escherichia coli: properties, functions and impact on the course of infections in vivo. J. Gen. Microbiol. 137, 441–454.

    Article  PubMed  Google Scholar 

  • Ishino, F. and Matsuhashi, M. (1981) Peptidoglycan synthetic enzyme activities of highly purified penicillinbinding protein 3 in Escherichia coli: a septum-forming reaction sequence. Biochem. Biophys. Res. Comm. 101, 905–911.

    Article  PubMed  CAS  Google Scholar 

  • Ishino, F., Mitsui, K., Tanaki, S. and Matsuhashi, M. (1980) Dual enzyme activities of cell wall peptidoglycan synthesis, peptidoglycan transglycosylase and penicillin sensitive transpeptidase, in purified preparations of Escherichia coli penicillin-binding protein 1A. Biochem. Biophys. Res. Comm. 97, 287–293.

    Article  PubMed  CAS  Google Scholar 

  • Ishino, F., Park, W., Tomioka, S., Tamaki, S., Takase, I., Kunugita, K., Matsuzawa, H., Asoh, S., Ohta, T., Spratt, B.G. and Matsuhashi, M. (1986) Peptidoglycan synthetic activities in membranes of Escherichia coli caused by overproduction of penicillin-binding protein 2 and RodA protein. J. Biol. Chem. 261,7024–7031.

    PubMed  CAS  Google Scholar 

  • Izaki, K., Matsuhashi, M. and Strominger, J.L. (1968) Biosynthesis of the bacterial cell walls. XIII. Peptidoglycan transpeptidase and D-alanine carboxypeptidase: penicillin-sensitive enzymatic reaction in strains of Escherichia coli. J. Biol. Chem. 243, 3180–3192.

    CAS  Google Scholar 

  • Jaffé, A., Chabbert, Y.A. and Derlot, E. (1983) Selection and characterization of β-lactam-resistant Escherichia coli K12 mutants. Antimicrob. Agents Chemother. 23, 622–625.

    Article  PubMed  Google Scholar 

  • James, R., Haga, J.Y. and Pardee, A.B. (1975) Inhibition of an early event in the cell division cycle of Escherichia coli by FL 1060, an amidinopenicillanic acid. J. Bacteriol. 122, 1283–1292.

    PubMed  CAS  Google Scholar 

  • Kato, J., Suzuki, H. and Hirota, Y. (1985) Dispensability of either penicillin binding protein-la or-lb involved in the essential process for cell elongation in Escherichia coli. Mol. Gen. Genet. 200, 272–277.

    Article  PubMed  CAS  Google Scholar 

  • Korat, B., Mottl, H. and Kech, W. (1991) Penicillin-binding protein 4 of Escherichia coli: molecular cloning of the dacB gene, controlled overexpression, and alterations in murein composition. Mol. Microbiol. 5, 675–684.

    Article  PubMed  CAS  Google Scholar 

  • Lleo, M.M., Canepari, P. and Satta, G. (1990) Bacterial cell shape regulation: testing of additional predictions unique to the two-competing-sites model for peptidoglycan assembly and isolation of conditional rodshaped mutants from some wild-type cocci. J. Bacteriol. 172, 3758–3771.

    PubMed  CAS  Google Scholar 

  • Lund, F. and Tybring, L. (1972) 6β-amidinopenicillanic acid — a new group of antibiotics. Nature New Biol. 236, 135–137.

    PubMed  CAS  Google Scholar 

  • Markiewicz, Z., Broome-Smith, J.K., Schwarz, U. and Spratt, B.G. (1982) Spherical E. coli due to elevated levels of D-alanine carboxypeptidase. Nature 297, 702–704.

    Article  PubMed  CAS  Google Scholar 

  • Matsuhashi, M., Takagaki, Y., Maruyama, I.N., Tanaki, S., Nishimura, Y., Suzuki, H., Ogino, U. and Hirota, Y. (1977) Mutants of Echerichia coli lacking in highly penicillin-sensitive D-alanine carboxypeptidase activity. Proc. Natl. Acad. Sci. USA. 74, 2976–2979.

    Article  PubMed  CAS  Google Scholar 

  • Matsuhashi, M., Tamaki, S., Curtis, T.S. and Strominger, J.L. (1979) Mutational evidence for identity of penicillin-binding protein 5 in Escherichia coli with major D-alanine carboxypeptidase IA activity. J. Bacteriol. 137, 644–647.

    PubMed  CAS  Google Scholar 

  • Mizuno, T., Yamada, H., Yamagata, H. and Mizushima, S. (1976) Coordinated alteration in ribosomes and cytoplasmic membrane in sucrose-dependent, spectinomycin-resistant mutants of Escherichia coli. J. Bacteriol. 125, 524–530.

    PubMed  CAS  Google Scholar 

  • Ogura, T., Bouloc, P., Niki, H., D’Ari, R., Hiraga, S. and Jaffé, A. (1989) Penicillin-Binding Protein 2 is essential in wild-type Escherichia coli but not in lov or cya mutants. J. Bacteriol. 171, 3025–3030.

    PubMed  CAS  Google Scholar 

  • Oliver, D. and Beckwith, J. (1982) Identification of a new gene (secA) and gene product involved in the secretion of the envelope proteins. J. Bacteriol. 150, 686–691.

    PubMed  CAS  Google Scholar 

  • Paek, K.-H. and Walker, G.C. (1987) Escherichia coli dnaK null mutants are inviable at high temperature. J. Bacteriol. 169, 283–290.

    PubMed  CAS  Google Scholar 

  • Park, J.T. and Burman, L. (1973) FL1060 — A new penicillin with a unique mode of action. Biochem. Biophys. Res. Comm. 51, 863–868.

    Article  PubMed  CAS  Google Scholar 

  • Pisabarro, A.G., Prats, R., Vazquez, D. and Rodriguez-Tébar, A. (1986) Activity of penicillin-binding protein 3 from Escherichia coli. J. Bacteriol. 168, 199–206.

    PubMed  CAS  Google Scholar 

  • Powell, J.K. and Young, K.D. (1991) Lysis of Escherichia coli by beta-Lactams which bind penicillinbinding proteins la and lb — Inhibition by Heat Shock Proteins. J. Bacteriol 173, 4021–4026.

    PubMed  CAS  Google Scholar 

  • Schmidt, L., Botta, G. and Park, J.T. (1981) Effects of furazlocillin, a β-lactam antibiotic which binds selectively to penicillin-binding protein 3, on Escherichia coli mutant deficient in other penicillinbinding proteins. J. Bacteriol. 145, 632–637.

    PubMed  CAS  Google Scholar 

  • Spotts, C.R. and Stanier, R.Y. (1961) Mechanism of streptomycin action on bacteria: a unitary hypothesis. Nature 192, 633–637.

    Article  PubMed  CAS  Google Scholar 

  • Spratt, B.G. (1976) Identification of the major penicillin binding proteins of Escherichia coli as D-alanine carboxypeptidase I A. J. Bacteriol. 127, 660–663.

    PubMed  CAS  Google Scholar 

  • Spratt, B.G. (1978) Escherichia coli resistance to β-lactam antibiotics throught a decrease in the affinity of a target for lethality. Nature 274, 713–715.

    Article  PubMed  CAS  Google Scholar 

  • Spratt, B.G. (1980) Deletion of the penicillin-binding protein 5 gene of Escherichia coli. J. Bacteriol. 144, 1190–1192.

    PubMed  CAS  Google Scholar 

  • Spratt, B.G. and Pardee, A.B. (1975) Penicillin-binding protein and cell shape in E. coli. Nature 254, 515–517.

    Article  Google Scholar 

  • Suzuki, H., Nishimura, Y. and Hirota, Y. (1978) On the process of cellular division in Escherichia coli: a series of mutants of E. coli altered in the penicillin-binding proteins. Proc. Natl. Acad. Sci. U.S.A. 75, 664–668.

    Article  PubMed  CAS  Google Scholar 

  • Tamaki, S., Nakajima, S. and Matsuhashi, M. (1977) Thermosensitive mutation in Escherichia coli simultaneously causing defects in penicillin-binding protein-IBs and in enzyme activity for peptidoglycan synthesis in vitro. Proc. Natl. Acad. Sci. USA. 74, 5472–5476.

    Article  PubMed  CAS  Google Scholar 

  • Tybring, L. and Mechior, N.H. (1975) Mecillinam (FL 1060), a 6β-amidinopencillanic acid derivative: bacterial action and synergy in vitro. Antimicrobiol. Agents Chemother. 8, 271–276.

    Article  CAS  Google Scholar 

  • Vinella, D., D’Ari, R. and Bouloc, P. (1992) Penicillin-binding protein 2 is dispensable in Escherichia coli when ppGpp synthesis is induced. EMBO 11, in press.

    Google Scholar 

  • Wachi, M., Doi, M., Tamaki, S., Park, W., Nakajima-Iijima, S. and Matsuhashi, M. (1987) Mutant isolation and molecular cloning oimre genes, which determine cell shape, sensitivity to mecillinam, and amount of penicillin-binding proteins in Escherichia coli. J. Bacteriol. 169,4935–4940.

    PubMed  CAS  Google Scholar 

  • Waxman, D.J. and Strominger, J.L. (1983) Penicillin-binding proteins and the mechanism of action of β-lactam antibiotics. Annu. Rev. Biochem. 52, 825–869.

    Article  PubMed  CAS  Google Scholar 

  • Xiao, H., Kaiman, M., Ikehara, K., Zemel, S., Glaser, G. and Cashel, M. (1991) Residual guanosine 3′,5′-bispyrophosphate synthetic activity of relA null mutants can be eliminated by spoT null mutations. J. Biol. Chem. 266, 5980–5990.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bouloc, P., Vinella, D., Joseleau-Petit, D., D’Ari, R. (1993). Does PBP2 Regulate Cell Division in E. coli?. In: de Pedro, M.A., Höltje, JV., Löffelhardt, W. (eds) Bacterial Growth and Lysis. Federation of European Microbiological Societies Symposium Series, vol 65. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9359-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9359-8_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9361-1

  • Online ISBN: 978-1-4757-9359-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics