Skip to main content
  • 400 Accesses

Abstract

Over the last decade rapid growth has occurred in the variety of scanned probe techniques available.1 The vast array of familiar reciprocal space probes is now joined by a multitude of real space probes. The relatively new ability to observe real space properties of systems at microscopic-length scales has found wide applicability across the physical sciences, from physics and chemistry to biology, with no end in sight. Much of this advancement has been made possible by the ready availability of commercial instruments operating in air, liquid, and vacuum. One can now even purchase high performance combined STM/AFM devices, tailored to a particular application. Despite this rapid advancement, however, there still exists a feeling that the fields of scanned probe microscopy are in their infancy, perhaps with the best yet to come. New techniques continue to be developed, and a new philosophy of experimentation has begun to take shape. Rather than just use scanned probe instruments as passive tools of surface characterization, researchers are increasingly using them to intentionally modify the systems under study. This change brings with it a great many new possibilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Wiesendanger and N.J. Guntherodt, eds., “Scanning Tunneling Microscopy,” Springer-Verlag, New York (1993).

    Google Scholar 

  2. G. Binnig, H. Rohrer, C. Gerber and E. Weibel_ 7x7 Reconstruction on Si(1 l I) resolved in real space, Phys. Rev. Lett. 50: 120–123 (1983).

    Article  CAS  Google Scholar 

  3. R. M. Feenstra, J. A. Stroscio, J. Tersoff and A. P. Fein, Atom-selective imaging of the GaAs(110) surface, Phys. Rev. Lett. 58: 1192–1195 (1987).

    Article  CAS  Google Scholar 

  4. R.M. Tromp, R.J. Hamers and J.E. Demuth, Si(001) dimer structure observed with scanning tunneling microscopy, Phys. Rev. Lett. 55: 1303–1306 (1985).

    Article  CAS  Google Scholar 

  5. J.A. Stroscio and W. J. Kaiser, eds., “Scanning Tunneling Microscopy,” Academic Press, Inc., San Diego (1993).

    Google Scholar 

  6. M.B. Johnson, P.M. Koenraad, W.C. v. d. Vleuten, H.W.M. Salemink and.CN.Wolter, Be delta-doped layers in GaAs imaged with atomic resolution using scanning tunneling microscopy, Phys. Rev. Lett. 75: 1606 (1995).

    Article  CAS  Google Scholar 

  7. C. Woll, S. Chiang, R. J. Wilson and P.H. Lippel, Determination of atom positions at stacking-fault dislocations on Au(111) by scanning tunneling microscopy, Phys. Rev. B 39: 7988–7991 (1988).

    Article  Google Scholar 

  8. M. F. Crommie, C. P. Lutz and D. M. Eigler, Imaging standing waves in a two-dimensional electron gas, Nature 363: 524–527 (1993).

    Article  CAS  Google Scholar 

  9. D. D. Chambliss and R. J. Wilson, Relaxed diffusion limited aggregation of Ag on Au(11 l) observed by scanning tunneling microscopy, J. Vac. Sci. B 9: 2 928–932 (1991).

    Article  CAS  Google Scholar 

  10. l0. D. Kandel and E. Kaxiras, Surfactant mediated crystal growth of semiconductiors, Phys. Rev. Lett. 75: 2742 (1995).

    Article  Google Scholar 

  11. J. A. Meyer, J. Vrijmoeth and R.J. Behm, Importance of the additional step-edge barrier in determining film morphology during epitaxial growth, Phys. Rev. B 51: 14790 (1995).

    Article  CAS  Google Scholar 

  12. H. Brune, H. Roder and K. Kern, Kinetic processes in metal epitaxy studied with variable temperature STM: AG/Pt (111), Thin solid films 264: 230 (1995).

    Article  CAS  Google Scholar 

  13. E.A. Eklund, E.J. Snyder and R.S. Williams, Correlation from randomness: quantitative analysis of ion-etched graphiste surfaces using the scanning tunneling microscope, Surface Science 285: 157 (1993).

    Article  CAS  Google Scholar 

  14. R.V. Coleman, Z. Dai and W.W. Mcnairy, Surface structure and spectroscopy of charge-density wave materials using scanning tunneling microscopy, Applied Surface Science 60, 485 (1992).

    Google Scholar 

  15. R. E. Thomson, B. Burk and A. Zettl, Scanning tunneling microscopy of the charge-density-wave structure in IT-TaS2, Phys. Rev. B 49, 16899–16916 (1994).

    Article  CAS  Google Scholar 

  16. H. F. Hess, R. B. Robinson, R. C. Dynes, J. J. M. Valles and J. V. Waszczak, Scanning-tunnelingmicroscope obervation of the Abrikosov flux lattice and the density of states near and inside a fluxoid, Phys. Rev. Lett. 62, 214 (1989).

    Article  CAS  Google Scholar 

  17. Maggio-Aprile, C. Renner, A. Erb, E. Walker and O. Fischer, Direct vortex lattice imaging and tunneling spectroscopy, Phys. Rev. Lett. 75: 2754–2757 (1995).

    Article  Google Scholar 

  18. G.J. Germann, S.R. Cohen and G. Neubauer, Atomic scale friction of a diamon tip on diamond (100) and (111) surfaces,.L Appl. Phys. 73: 163–167 (1993).

    Article  CAS  Google Scholar 

  19. M.D. Peny and I A. Ilarrison, lJniversal aspects of the atomic scale friction of diamond surfaces, J. Phys. Chem. 99: 960–65 (1995).

    Google Scholar 

  20. D. Sarid, `Scanning Force Microscopy“ Oxford University Press, New York (1991). 21 P. K. I Iansma, V. 13. Flings, O. Marti and C. E. Bracker, Scanning tunneling microscopy and atomic force microscopy: Application to biology and technology, Science 242: 209–216 (1988).

    Google Scholar 

  21. J. H. Hoh and P. K. Hansma, Atomic force microscopy for high resolution imaging in cell biology, Trends in Cell Biology 2: 208–213 (1992).

    Article  CAS  Google Scholar 

  22. D. M. Eigler and E. K. Schweizer, Positioning single atoms with a scanning tunneling microscope, Nature 344: 524–526 (1990).

    Article  CAS  Google Scholar 

  23. P. Avouris, ed., “Atomic and Nanometer-Seale Modification of Materials: Fundamentals and Applications” Kluwer Academic Publishers, Boston (1993).

    Google Scholar 

  24. P.H. Beton, A. Dunn and P. Moriarty, Manipulation of C50 molecules on a Si surface, Appl. l’hys. Lett. (in press).

    Google Scholar 

  25. M.F. Crommie, C. P. Lutz and D. M. Eigter, Confinement of electrons to quantum corrals on a metal surface, Science 262: 218–220 (1993).

    Article  CAS  Google Scholar 

  26. E.J. Heller, M.I. Crommie, C.Y. Lutz and D.M. Eigler, Scattering and adsorption of surface electron P. Avouris waves in quantum corrals, Nature 369: 464–466 (1994).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Crommie, M.F. (1997). Keynote Address. In: Cohen, S.H., Lightbody, M.L. (eds) Atomic Force Microscopy/Scanning Tunneling Microscopy 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9325-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9325-3_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9327-7

  • Online ISBN: 978-1-4757-9325-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics