Skip to main content

Solubility and Phase Behavior of Asphaltenes in Hydrocarbon Media

  • Chapter
Book cover Asphaltenes

Abstract

Several decades of experimental and theoretical investigation notwithstanding, only a partial description of the physical state of asphaltenes in crude oil and hydrocarbon solvents and of their tendency to undergo phase separation has been achieved. The strong interest in developing a better understanding of the solution behavior of asphaltenes is motivated by the impact of their phase separation on the production, transportation, refining, and utilization of crude oil. The tendency of asphaltenes to sediment and flocculate during storage and transportation, for example, is a serious economic issue. Less familiar, perhaps, are the production problems that can be caused by the formation of asphaltene deposits within the reservoir or wellbore.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Galoppini and M. Tambini, Asphaltene deposition monitoring and removal treatments: an experience in ultra deep wells, paper SPE 27622, 1994 Europ. Production Operations Conf.,Society of Petroleum Engineers: Richardson, TX.

    Google Scholar 

  2. K.H. Altgelt and M.M. Boduszynski, “Composition and Analysis of Heavy Petroleum Fractions,” Marcel. Dekker, New York (1994).

    Google Scholar 

  3. K.H. Altgelt and T.H. Gouw, “Chromatography in Petroleum Analysis,” Marcel Dekker, New York (1979).

    Google Scholar 

  4. L.R. Snyder and J.J. Kirkland, “Introduction to Modern Liquid Chromatography,” Wiley, New York (1979).

    Google Scholar 

  5. D.W. Later, M.L. Lee, K.D. Bartle, R.C. Kong and D.L. Vassiloros, Chemical class separation and characterization of organic compounds in synthetic fuels, Anal. Chem. 53: 1612 (1981).

    Article  CAS  Google Scholar 

  6. E. Lundanes and T. Greibrockk, Quantitation of boiling fractions of North Sea oil after class separation and gel permeation chromatography, J. Liq. Chromat. 8: 1035 (1985).

    Article  CAS  Google Scholar 

  7. M.M. Boduszynski, R.J. Hurtubise and H.S. Silver, Separation of solvent-refined coal into compound-class fractions, Anal. Chem. 54: 375 (1982).

    Article  CAS  Google Scholar 

  8. W.D. Dark, Crude oil hydrocarbon group separation quantitation.. 1 Liq. Chromat. 5: 1645 (1982).

    Article  CAS  Google Scholar 

  9. D.W. Later and B.W. Wilson, Standardization of alumina and silica adsorbents used for chemical class separation of polycyclic aromatic compounds, Anal. Chem. 57: 2979 (1985).

    Article  CAS  Google Scholar 

  10. C.D. Pearson and S.G. Gharfeh, Automated high-performance liquid chromatography determination of hydrocarbon types in crude oil residue using a flame ionization detector, Anal. Chem. 58: 307 (1986).

    Article  CAS  Google Scholar 

  11. M. Bouquet, J.M. Colin, J.P. Durand and R. Boulet, New analytical tools for the upgrading of residual feeds through the FCC process, ACS Div. Pet. Chem. Preprints 34: 339 (1989).

    CAS  Google Scholar 

  12. L.W. Corbett and U. Petrossi, Differences in distillation and solvent separated asphalt residue, IandEC Prod. Res. Develop. 17: 342 (1978).

    Article  CAS  Google Scholar 

  13. A. Matsunaga, Separation of aromatic and polar compounds in fossil fuel liquids by liquid chromatography, Anal. Chem. 55: 1375 (1983).

    Article  CAS  Google Scholar 

  14. E. Lundanes and T. Greibrokk, Group separation of oil residues by supercritical fluid chromatography, J. Chromatogr. 349: 439 (1985).

    Article  CAS  Google Scholar 

  15. L. Carbognani and A. Izquierdo, Preparative compound class separation of heavy oil vacuum residue by high-performance liquid chromatography, Fuel Sci.and Techn. Int’l. 8: 1 (1990).

    Article  CAS  Google Scholar 

  16. J.G. Speight, “The Chemistry and Technology ofPetroleum”, Marcel Dekker, New York (1980), Ch.5.

    Google Scholar 

  17. J.G. Speight, R.B. Long and T.D. Trowbridge, Factors influencing the separation of asphaltenes from heavy petroleum feedstocks, Fuel 63: 616 (1984).

    Article  CAS  Google Scholar 

  18. Standards for Petroleum and Its Products, Standard No. IP 143/57“, Institute of Petroleum, London.

    Google Scholar 

  19. D.L. Mitchell and J.G. Speight, The solubility of asphaltenes in hydrocarbon solvents, Fuel 52: 149 (1973).

    Article  CAS  Google Scholar 

  20. R.B. Long, The concept of asphaltenes, ACS Div. Petr. Chem. Preprints 24: 891 (1979).

    CAS  Google Scholar 

  21. S.E. Moschopedis and J.G. Speight, Investigation of hydrogen bonding by oxygen functions in Athabasca bitumen, Fuel 55: 187 (1976).

    Article  CAS  Google Scholar 

  22. J.G. Speight and S.E Moschopedis, Some observations on the molecular “nature” of petroleum asphaltenes, ACS Div. Pet. Chem. Preprints 24: 910 (1979).

    CAS  Google Scholar 

  23. J.G. Speight, Solvent effects in the molecular weight of petroleum asphaltenes, ACS Div. Pet. Chem.Preprints 26: 825 (1981).

    CAS  Google Scholar 

  24. J.G. Speight, A chemical and physical explanation of incompatibility during refining operations, Proc. 4th Intl. Conf on the Stability and Handling of Liquid Fuels, US Dept. Energy, 169 (1992).

    Google Scholar 

  25. R.B. Long and J.G. Speight, Studies in petroleum composition. Development of a compositional “map” for various feedstocks, Rev. de l’Institut Francaise du Petrole 44: 205 (1989).

    CAS  Google Scholar 

  26. J.G. Speight, Latest thoughts on the molecular nature of petroleum asphaltenes, ACS Div. Pet. Chem. Preprints 34: 321 (1989).

    CAS  Google Scholar 

  27. J.A. Koots and J.G. Speight, Relation of petroleum resins to asphaltenes, Fuel 54: 179 (1975).

    Article  CAS  Google Scholar 

  28. J.K. Brown and W.R. Ladner, A study of the hydrogen distribution in coal-like materials by high resolution nuclear magnetic resonance spectroscopy. I-The measurement and interpretation of the spectra, Fuel 36: 79 (1960).

    Google Scholar 

  29. J.K. Brown and W.R. Ladner, A study of the hydrogen distribution in coal-like materials by high resolution nuclear magnetic resonance spectroscopy. II-A comparison with infra-red measurement and the conversion to carbon structure, Fuel 36: 87 (1960).

    CAS  Google Scholar 

  30. Y. Maekawa, T. Yoshida and Y. Yoshida, Quantitative 13C nmr spectroscopy of a coal-derived oil and the assignment of chemical shifts, Fuel 58: 864 (1979).

    Article  CAS  Google Scholar 

  31. E.M. Dickinson, Structural composition of petroleum fractions using proton and 13C NMR spectroscopy, Fuel 59: 290 (1980).

    Article  CAS  Google Scholar 

  32. P.F. Barron, M.R. Bendall, M.J. Armostrong and A.R. Atkins, Application of the DEPT pulse sequence for the fractions of 13CH„ sub-spectra of coal-derived liquids, Fuel 63: 1276 (1984).

    Article  CAS  Google Scholar 

  33. J.M. Dereppe and C. Moreaux, Measurement of CH, group abundances in fossil fuel materials using DEPT 13C NMR, Fuel 64: 1174 (1985).

    Article  CAS  Google Scholar 

  34. C.E. Snape and M.K. Marsh, Stuctural analysis of heavy fossil fuel fractions using 13C NMR spectral editing, ACS Div. Pet. Chem. Preprints 30: 20 (1985).

    Google Scholar 

  35. C.E. Snape, W.R. Ladner, L. Petrakis and B.C. Gates, The chemical nature of asphaltenes from coal liquefaction processes, Fuel Proc. Techn. 8: 155 (1984).

    Article  CAS  Google Scholar 

  36. D.J. Cookson and B.E. Smith, One-and two-dimensional NMR methods for elucidating structural characteristics of aromatic fractions from petroleum and synthetic fuels, Fuel 1: 11 (1987).

    Google Scholar 

  37. C.E. Snape, G.J. Ray and C.D. Price, Two-dimensional NMR analysis of aromatic fractions from a coal liquefaction solvents, Fuel 65: 877 (1986).

    Article  CAS  Google Scholar 

  38. B.P. Tissot and D.H. Weite, “Petroleum Formation and Occurrence,” Springer-Verlag, New York (1978), Part IV.

    Book  Google Scholar 

  39. J.F. McKay, P.J. Amend, P.M. Hamsberger, T.E. Cogswell and D.R. Latham, Composition of petroleum heavy ends. 1. Separation of petroleum 675°C residues, Fuel 60: 14 (1981).

    Article  CAS  Google Scholar 

  40. J.F. McKay, P.J. Amend, P.M. Hamsberger, R.B. Erickson, T.E. Cogswell and D.R. Latham, Composition of petroleum heavy ends. 2. Characterization of compound types in petroleum 675°C residues, Fuel 60: 17 (1981).

    Article  CAS  Google Scholar 

  41. Geochemistry of Sulfur in Fossil Fuels“, edited by W.L. Orr and C.M. White, ACS Symp. Series 429, American Chemical Society, Washington, DC (1990).

    Google Scholar 

  42. K.D. Rose and M.A. Francisco, A two-step chemistry for highlighting heteroatom species in petroleum materials using 13C NMR spectroscopy, J. Am. Chem. Soc. 110: 637 (1988).

    Article  CAS  Google Scholar 

  43. J.M. Ruiz., B.M. Carden, L.J. Lena, E.J. Vincent and J.C. Escalier, Determination of sulfur in asphalts by selective oxidation and photoelectron spectroscopy for chemical analysis, Anal. Chem. 54: 689 (1982).

    Article  Google Scholar 

  44. H.V. Drushel, Sulfur compounds in petroleum-known and unknown, ACS Diu Pet. Chem. Preprints 15: C13 (1970).

    CAS  Google Scholar 

  45. S.R.Keleman, G.N. George and M.L. Gorbaty, Direct determination and quantification of sulphur forms in heavy petroleum and coal. 1. The X-ray photoelectron spectroscopy (XPS) approach, Fuel 69: 939 (1990).

    Article  Google Scholar 

  46. G.S. Waldo, O.C. Mullins, J.E. Penner-Hahn and S.P. Cramer, Determination of the chemical environment of sulphur in petroleum asphaltenes by X-ray absorption spectroscopy Fuel 71:53 (1992).

    Google Scholar 

  47. S.E. Moschopedis, R.W. Hawkins and J.G. Speight, Identification of nitrogen functional groups in Athabasca bitumen, Fuel 60: 397 (1981).

    Article  CAS  Google Scholar 

  48. J.M. Jacobsen and M.R. Gray, Use of IR spectroscopy and nitrogen titration data in structural group analysis of bitumen, Fuel 66: 749 (1987).

    Article  Google Scholar 

  49. J.F. McKay, J.H. Weber and D.R. Latham, Characterization of nitrogen bases in high-boiling petroleum distillates, Anal. Chem. 48: 891 (1976).

    Article  CAS  Google Scholar 

  50. S. Mitra-Kirtley, O.C. Mullins, J. van Elp, S.J. George, J. Chen and S.P. Cramer, Determination of the nitrogen chemical structures in petroleum asphaltenes using XANES spectroscopy, J. Am. Chem. Soc. 115: 252 (1993).

    Article  CAS  Google Scholar 

  51. K.D. Rose and M.A. Francisco, Characterization of acidic heteroatoms in heavy petroleum fractions by phase-transfer methylation and NMR spectroscopy, Energy and Fuels 1:233 (1987).

    Google Scholar 

  52. R.G.S. Ritche, R.S. Roche and W. Steedman, Pyrolysis of Athabasca tar sands: analysis of the condensible products from asphaltene, Fuel 58: 523 (1979).

    Article  Google Scholar 

  53. E.W. Bakar, Mass spectrometric characterization ofpetroporphyrins, J. Am. Chem. Soc. 88: 2311 (1966).

    Article  Google Scholar 

  54. F.E. Dickson and L. Petrakis, Application of electronmagnetic resonance and electronic spectroscopy to the characterization of vanadium species in petroleum fractions, Anal. Chem. 42: 978 (1972).

    Article  Google Scholar 

  55. M. Popl, V. Dolansky, G. Sebor and M. Stejskal, Hydrocarbons and porphyrins in rock extracts, Fuel 57: 565 (1978).

    Article  CAS  Google Scholar 

  56. D.H. Freedman, D.C. Saint Martin and C.J. Boreham, Identification of metalloporhyrins by third-derivative UV/Vis diode array spectroscopy, Energy and Fuels 7: 194 (1993).

    Article  Google Scholar 

  57. R.H. Fish and J.J. Komlenic, Molecular characterization and profile identifications of vanadyl compounds in heavy crude petroleum by liquid chromatography/graphite furace atomic spectrometry, Anal. Chem. 56: 510 (1984).

    Article  CAS  Google Scholar 

  58. R.H. Fish, J.J. Komlenic and B.K. Wines, Characterization and comparison of vanadyl and nickel compounds in heavy crude petroleums and asphaltenes by reverse-phase and size exclusion liquid chromatography/graphite furace atomic spectrometry, Anal. Chem. 56: 2452 (1984).

    Article  CAS  Google Scholar 

  59. C.D. Pearson and J.B. Green, Vanadium and Nickel complexes in petroleum resid acid, base, and neutral fractions, Energy and Fuels 7: 338 (1993).

    Article  CAS  Google Scholar 

  60. J.G. Speight and S.E. Moschopedis, On the polymeric nature of petroleum asphaltenes, Fuel 59: 440 (1980).

    Article  CAS  Google Scholar 

  61. D.A. Storm, S.J. DeCaino, M.M. De Tar and V.P. Nero, Upper bound on number average molecular weight of asphaltene, Fuel 69: 735 (1990).

    Article  CAS  Google Scholar 

  62. J.F. McKay, P.J. Amend, T.E. Cogswell, P.M. Hamsberg, R.B. Erickson and D.R. Latham, Petroleum asphaltenes-chemistry and composition, ACS Div: Pet. Chem. Preprints 22: 708 (1977).

    Google Scholar 

  63. J. Briant and G. Hotier, Etude de l’étage des asphaltènes dans les melanges d’hydrocarbures: taille des amas moléculaires, Rev. de l’Institut Francaise du Petrole 38: 83 (1983).

    CAS  Google Scholar 

  64. J.G. Speight, D.L. Wernick, K.A. Gould, R.E. Overfield, B.M.L. Rao and D.W. Savage, Molecular weight and association of asphaltenes: a critical review, Rev. de l’Institut Francaise du Petrole 40: 51 (1985).

    CAS  Google Scholar 

  65. S.E. Moschopedis, J.F. Freycr and J.G. Speight, Investigation of asphaltene molecular weights, Fuel 55: 227 (1976).

    Article  CAS  Google Scholar 

  66. M.M. Al-Jarrah and A.N. Al-Dujaili, New findings on the physical nature of asphalts, Fuel Sci. and Tech. Intl 7: 69 (1989).

    CAS  Google Scholar 

  67. M.M. Boduszynski, Composition of heavy petroleum. 2. Molecular characterization, Energy and Fuels 2: 597 (1988).

    Article  CAS  Google Scholar 

  68. K.E. Chung, L.L. Anderson and W.H. Wiser, Molecular weight determination by vapor-phase-osmometry, Fuel 58: 847 (1978).

    Article  Google Scholar 

  69. K.H. Altgelt, Asphaltene molecular weight by vapor pressure osmometry, ACS Div. Pen: Chem. Preprints 13 (3): 37 (1968).

    CAS  Google Scholar 

  70. S. Acevedo, G. Escobar, L.B. Gutierrez and J. D’ Aquino, Synthesis and isolation of asphaltenes standard for calibration of G.P.C. columns and determination of asphaltene molecular weight, Fuel 7 1:1077 (1992).

    Google Scholar 

  71. R.E. Overfield, E.Y. Sheu, S.K. Sinha and K.S. Liang, SANS study of asphaltene aggregation, Fuel Sci. and Techn. Intl. 7: 611 (1989).

    CAS  Google Scholar 

  72. J.C. Ravey, G. Decouret and D. Espinat, Asphaltene macrostructure by small angle neutron scattering, Fue167: 1560 (1988).

    Google Scholar 

  73. E.Y. Sheu, M.M. DeTar, D.A. Storm and S.J. DeCanio, Aggregation and kinetics of asphaltenes in organic solvents, Fuel71: 299 (1992).

    Google Scholar 

  74. A.F.M. Barton, “CRC Handbook of Solubility Parameters and Other Cohesion Parameters” CRC Press, Boca R aton (199 I).

    Google Scholar 

  75. C.E. Snape and K.D. Bartle, Definition of fossil fuel-derived asphaltenes in terms of average structural properties, Fuel 63: 883 (1984).

    Article  CAS  Google Scholar 

  76. P.R. Waller, A. Williams and K.D. Bartle. The structural nature and solubility of residual fuel oil fractions, Fuel 68: 520 (1989).

    Article  CAS  Google Scholar 

  77. C.W. Benson, R.A. Simcox and I.C. Huldal, Tailoring aromatic hydrocarbons for asphaltene removal, Fourth Symposium on Chemicals in the Oil Industry: Dey. and Appl., Ed P.H. Ogden, 215 (1991).

    Google Scholar 

  78. G.P. Dayvault and D.E. Patterson, Solvent and acid stimulation increase production in Los Angeles basin waterflood, paper SPE 18816, 1989 SPE Reg. Meeting,Society of Petroleum Engineers: Richardson, TX.

    Google Scholar 

  79. M.L. Samuelson, Alternatives to aromatics for solvency of organic deposits, paper SPE 23816, 1992 SPE Int’l. Symp. on Formation Damage, Society of Petroleum Engineers: Richardson, TX.

    Google Scholar 

  80. G. Broaddus. Well-and formation-damage removal with nonacid fluids, J.Petroleum Techn. 685 (June 1988).

    Google Scholar 

  81. G. Gonzales and A. Middea, Peptization of asphaltene by various oil soluble amphiphiles, Colloids and Surfaces 42: 207 (1991).

    Article  Google Scholar 

  82. M.G. Trbovich and G.E. King, Asphaltene deposit removal: long-lasting treatment with a co-solvent, paper SPE 21038, 1991 SPE lnt’l. Symp. on Oilfield Chem.,Society of Petroleum Engineers: Richardson, TX.

    Google Scholar 

  83. M.E. Newberry and K.M. Barker, Formation damage prevention through the control of paraffin and asphaltene deposition, paper SPE 13796, 1991 SPE Production Operations Symp.,Society of Petroleum Engineers: Richardson, TX.

    Google Scholar 

  84. L. Barberis Canonico. A. Del Bianco, G. Piro and F. Stroppa, C. Carniani, E. Mazzolini, A comprehensive approach for the evaluation of chemicals for asphaltene deposit removal. Recent Advances in Oilfield Chemistry, Ed. by P. H. Ogden, The Royal Society of Chemistry, p.220 (1994).

    Google Scholar 

  85. A. Del Bianco, F. Stroppa and L. Bertero, Tailoring hydrocarbon streams for asphaltene removal, paper SPE 28992, 1995 SPE Int’1. Symp. on Oilfield Chemistry,Society of Petroleum Engineers: Richardson, TX.

    Google Scholar 

  86. F.J. Nellensteyn, The constitution of asphalt, J. Inst. Petrol. Technol. 10: 311 (1924).

    CAS  Google Scholar 

  87. F.J. Nellensteyn, The composition of the micelle nucleus of asphalt bitumen and coal tar, and some related problems, Chem. Weekblad 36: 362 (1939).

    CAS  Google Scholar 

  88. J.Ph. Pfeiffer and R.N. Saal, Asphaltic bitumen as colloid system, J. Phys. Chem. 44: 139 (1940).

    Article  CAS  Google Scholar 

  89. J.M. Swanson. A contribution to the physical chemistry of the asphalts, J. Phys. Chem. 46: 141 (1942).

    Article  CAS  Google Scholar 

  90. T.F. Yen, A macrostructure of petroleum asphalt, ACS Div. Petr. Chem. Preprints 35: 314 (1990).

    Google Scholar 

  91. P.C. Hiemenz, “Principles of Colloid and Surface Chemistry,” Ch. 1, 8, and 11, Marcel Dekker, New York, 2nd ed. (1986).

    Google Scholar 

  92. J.P. Dickie and T.F. Yen, Macrostructures of the asphaltic fractions by various instrumental methods, Anal. Chem. 39: 1847 (1967).

    CAS  Google Scholar 

  93. D. Espinat, and J.C. Ravey, Colloidal structure of asphaltene solutions and heavy oil fractions studied by small angle neutron and x-ray scattering, paper SPE 25187, 1993 SPE Int’l. Symp. on Oilfield Chem.,Society of Petroleum Engineers: Richardson, TX.

    Google Scholar 

  94. K.J. Leontaritis and G.A. Mansoori, Asphaltene flocculation during oil recovery and processing: a thermodynamic-colloidal model, paper SPE 16258, 1987 SPE Int’1. Symp. on Oilfield Chem.,Society of Petroleum Engineers: Richardson, TX.

    Google Scholar 

  95. J.S. Parkand and G.A. Mansoori, Aggregation and deposition of heavy organics in petroleum crudes, Energy Sources 10: 109 (1988).

    Article  Google Scholar 

  96. W.K. Stephenson, Producing asphaltenic crude oils: problems and solutions, Petrol. Eng. Intl. 6: 24 (1990).

    Google Scholar 

  97. K.J. Leontaritis, Asphaltene deposition: a comprehensive description of problem manifestations, and modeling approaches, paper SPE 18892, 1989 SPE Production Operations Symp.,Society of Petroleum Engineers: Richardson, TX.

    Google Scholar 

  98. K.J. Leontaritis, J.O. Amaefule and R.E. Charles. A systematic approach for the prevention and treatment of formation damage caused by asphaltene deposition, SPE Production Facilities, 9: 157 (1994).

    CAS  Google Scholar 

  99. J. Escobedo and G.A. Mansoori, Determination of the onset of asphaltene flocculation (a novel method), paper SPE 28018, Society of Petroleum Engineers: Richardson, TX.

    Google Scholar 

  100. J.J. Heithaus, Measurement and significance of asphaltene peptization, J. Inst. Petrol. 48: 45 (1962).

    Google Scholar 

  101. D.L. Katz and K.E. Beu, Nature of asphaltic substances, Ind. Eng. Chem. 37: 195 (1945).

    Article  CAS  Google Scholar 

  102. E.Y. Sheu, K.S. Liang, S.K. Sinha and R.E.Overfield, Polydispersity analysis of asphaltene solutions in toluene, J. Colloid Interface. Sci. 153:399 (1992).

    Google Scholar 

  103. N.F. Carnahan, L. Quintero, D.M. Pfund, H.L. Fulton, R.D. Smith, M. Capel and K. Leontaritis, A small angle x-ray scattering study of the effect of pressure on the aggregation of asphaltene fractions in petroleum fluids under near-critical solvent conditions, Langmuir 9: 2035 (1993).

    Article  CAS  Google Scholar 

  104. K.J. Leontaritis, “Asphaltene Deposition: A Thermodynamic-Colloidal Model,” Dissertation for the degree of Doctor of Philosophy in Chemical Engineering, University of Illinois, Chicago (1988).

    Google Scholar 

  105. H. Tompa, “Polymer Solutions,” Butterworths, London (1956).

    Google Scholar 

  106. A. Hirschberg, L.N.J. de Jong, B.A. Schipper and J.G.Meijers, Influence of temperature and pressure on asphaltene flocculation, Soc. Petrol. Eng. J. 6: 283 (1984).

    Google Scholar 

  107. J.M. Prausnitz, R.N. Lichtenthaler and E.G. de Azevedo, “Molecular Thermodynamics of Fluid-Phase Equilibria”, Prentice-Hall, Englewood Cliffs (1986).

    Google Scholar 

  108. N.E. Burke, R.E. Hobbs and S.F. Kashou, Measurement and modeling of asphaltene precipitation, J. Petroleum Techn., 42: 1440 (1990).

    CAS  Google Scholar 

  109. S.L. Kokal, J. Najman, S.G. Sayegh and A.E. George, Measurement and correlation of asphaltene precipitation from heavy oils by gas injection, J. Canadian Petrol. Techn. 31 (4): 24 (1992).

    CAS  Google Scholar 

  110. R.L. Scott and M. Magat, The thermodynamics of high-polymer solutions. I. The free energy of mixing of solvents and polymers of heterogeneous distribution, J. Chem. Phys. 13: 172 (1945).

    Article  CAS  Google Scholar 

  111. S. Kawanaka, S.J. Park and G.A. Mansoori, Organic deposition from reservoir fluids: a thermodynamic predictive technique, Soc. Petrol. Eng. Reservoir Eng. 6: 185 (1991).

    CAS  Google Scholar 

  112. S. Kawanaka, S.J. Park and G.A. Mansoori, The role of asphaltene deposition in FOR gas flooding: a predictive technique, paper SPE/DOE 17376, 1988 SPE/DOE Enhanced Oil Recovery Symp.,Society of Petroleum Engineers: Richardson, TX.

    Google Scholar 

  113. G.A. Mansoori and T.S. Jiang, Asphaltene deposition and its role in Eor miscible gas flooding, Proceedings, 3rd Europ. Conf on Enhanced Oil Recovery, Rome, 16–18 Apr. (1985).

    Google Scholar 

  114. F.G. Thomas, D.B. Bennion, D.W. Bennion and B.E. Hunter, Experimental and theoretical studies of solids precipitation from reservoir fluid, J.Can.Petrol.Techn., 31 (1): 22 (1992).

    CAS  Google Scholar 

  115. T. H. Chung, Thermodynamic modeling for organic solid precipitation, paper SPE 24851, 67th Ann. Techn. Conf. (1992),Society of Petroleum Engineers: Richardson, TX.

    Google Scholar 

  116. N. Senglet, C. Williams, D.Faure, T. Des Courieres and R. Guilard, Microheterogeneity study of heavy crude petroleum by uv-visible spectroscopy and small angle x-ray scattering, Fuel 69: 72 (1990).

    Article  CAS  Google Scholar 

  117. G. Del Piero (Eniricerche), unpublished results.

    Google Scholar 

  118. F. Chung, P. Sarathi and R. Jones, Modeling of asphaltene and wax precipitation, Topical Report NIPER-498, UC-122 (1991).

    Chapter  Google Scholar 

  119. K.R.L. Popper, “The Logic of Scientific Discovery,” Routledge, New York (1992).

    Google Scholar 

  120. K. Kawate, I. Imagawa and M. Nakata, Cloud-point curves of ternary system nitroethane+cyclohexane+polystyrene determined by a novel method, Polymer J. 23: 233 (1991).

    Article  CAS  Google Scholar 

  121. G. Hotier and M. Robin, Effects of different diluents on heavy oil products: measurement, interpretation, and a forecast of asphaltene flocculation, Revue de 1’IFP 38: 101 (1983).

    CAS  Google Scholar 

  122. C. Reichert, B.J. Fuhr and L.L. Klein, Measurement of asphaltene flocculation in bitumen solutions, J.Can.Petrol.Techn., 25 (5): 33 (1986).

    CAS  Google Scholar 

  123. R. Cimino, S. Correra, P. Sacomani and C. Carniani, paper SPE28993, 1995 SPE Int’l. Symp. on Oilfield Chemistry,Society of Petroleum Engineers: Richardson, TX.

    Google Scholar 

  124. I. Sanchez, Polymer phase separation, in Encyclopedia of Physical Science and Technology,“ Meyers, R.A., ed., Academic Press, Orlando (1987).

    Google Scholar 

  125. G. Soave, Application of equations of state and the theory of group solutions to phase equilibrium prediction, Fluid Phase Equilibria 87: 23 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cimino, R., Correra, S., Del Bianco, A., Lockhart, T.P. (1995). Solubility and Phase Behavior of Asphaltenes in Hydrocarbon Media. In: Sheu, E.Y., Mullins, O.C. (eds) Asphaltenes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9293-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9293-5_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9295-9

  • Online ISBN: 978-1-4757-9293-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics