Skip to main content

Sulfur and Nitrogen Molecular Structures in Asphaltenes and Related Materials Quantified by XANES Spectroscopy

  • Chapter
Asphaltenes

Abstract

Asphaltenes are an important class of natural materials with many distinctive properties.1–4 Asphaltenes strongly affect the chemical and physical properties of petroleum, and, as such, have a significant impact on the production, transportation and refining of petroleum. The viscosity and adhesion of petroleum markedly increase with greater asphaltene content, causing significant difficulties in the processing of petroleum. The asphaltene fraction is the least valuable component of crude oil, and its relatively high resistance to cracking further decreases the yield of valuable distillate fractions such as gasoline. The degradation of catalysts is accelerated by the presence of asphaltenes due to both their heavy metal content and their tarry nature when combined with resins. Also, asphalts represent a hazard when released (unintentionally) into the environment due to their resistance to biodegradation and their tenacious adhesive powers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.V. Chilingarian, T.F. Yen, (Ed.), “Bitumens, Asphalts and Tar Sands,” Elsevier Pub. Co. Amsterdam (1978)

    Google Scholar 

  2. J.W. Bunger, N.C. Li, (Ed.), “Chemistry ofAsphaltenes,” Amer. Chem. Soc., Wash D.C. (1981)

    Google Scholar 

  3. J.G. Speight, “The Chemistry and Technology of Petroleum,” Marcel Dekker, Inc. New York (1980)

    Google Scholar 

  4. B.P. Tissot, D.H. Weite, “Petroleum Formation and Occurrence,” Springer Verlag, Berlin (1984)

    Google Scholar 

  5. T.F. Yen, (Ed.) “The Role of Trace Metals in Petroleum,” Ann Arbor Science Pub Inc., Michigan (1975)

    Google Scholar 

  6. G. Margaritondo, “Introduction to Synchrotron Radiation,” Oxford University Press, New York (1988)

    Google Scholar 

  7. D.E. Eastman, Y. Farge, (Ed.), “Handbook on Synchrotron Radiation,” North-Holland Pub. Co. Amsterdam (1983)

    Google Scholar 

  8. J. Stohr, “NEXAFS Spectroscopy,” Springer-Verlag, Berlin (1992)

    Google Scholar 

  9. J. Goulon, C. Goulon-Ginet, R Cortes, J.M. Dubois, J. Phys. 43, 539 (1982)

    CAS  Google Scholar 

  10. P.A. Lee, P.H. Citrin, P. Eisenberger, B.M. Kincaid, Rev. Mod. Phys., 53, 769 (1981)

    Article  CAS  Google Scholar 

  11. T.A. Tyson, K.O. Hodgson, C.R. Natoli, M. Benfatto, Phys. Rev B, 46, 5997 (1994)

    Article  Google Scholar 

  12. J.L. Dehmer, J. Chem. Phys., 56, 4469 (1972)

    Article  Google Scholar 

  13. H. Nakamatsu, T. Mukoyama, H. Adachi, Chem. Phys. 143, 221 (1990)

    Article  CAS  Google Scholar 

  14. T.A. Ferret, D.W. Lindle, P.A. Heimann, H.G. Kerkhoff, U.E. Becker, D.A. Shirley, Phys. Rev. B 34, 1916 (1986)

    Google Scholar 

  15. S.P. Cramer “Extended X-Ray Absorption Fine Structure,” D. Konigsberger, R. Prins, ( Ed.) Plenum, New York (1988)

    Google Scholar 

  16. J.L. Dehmer, D. Dill, J. Chem. Phys., 65, 5327 (1976)

    Article  CAS  Google Scholar 

  17. E.A. Stern, S.M. Heald, in “Handbook on Synchrotron Radiation,” D.E. Eastman, Y. Farge, (Ed.), North-Holland Pub. Co. Amsterdam (1983)

    Google Scholar 

  18. S.S. Hasnian, J.R. Helliwell, H. Kamitsubo, J. Synchrotron Rad., 1, 1 (1994)

    Article  Google Scholar 

  19. C.T. Chen, Nucl. Instrum. Methods Phys. Res., A256, 595 (1989)

    Google Scholar 

  20. C.T. Chen, F. Sette, Rev. Sei. Instrum. 60, 1616 (1989)

    Article  CAS  Google Scholar 

  21. C.T. Chen, Rev. Sci. Instrum. 63, 1299 (1992)

    Google Scholar 

  22. Z. Hussain, E. Umbach, D.A. Shirely, J. Stohr, J. Feldhaus, Nucl. Instrum. Methods, 195, 115 (1982)

    Article  CAS  Google Scholar 

  23. C.L. Spiro, J. Wong, F.W. Lytle, R.B. Greegor, D.H. Maylotte, S.H. Lamson, Science, 226, 48 (1984)

    Article  CAS  Google Scholar 

  24. B. Hedman, P. Frank, J.E. Penner-Hahn, A.L. Roe, K.O. Hodgson, R.M.K. Carlson, G. Brown, J. Cerino, and R. Hettel. Nucl. Instrum. Methods Phys. Res., A246, 797 (1986).

    Google Scholar 

  25. G.N. George, M.L. Gorbaty, J. Amer. Chem. Soc., 111, 3182, (1989)

    Article  CAS  Google Scholar 

  26. G.P. Huffman, F.E. Huggins, S. Mitra, N. Shah, R.J. Pugmire, B. Davis, F.W. Lytle, R.B. Greegor, Energy and Fuies 3, 200, (1989)

    CAS  Google Scholar 

  27. G.S. Waldo, R.M.K. Carlson, J.M. Moldowan, K.E. Peters, J.E. Penner-Hahn, Geochim. Cosmochim. Acta, 55, 801 (1991)

    Article  CAS  Google Scholar 

  28. S.P. Cramer, F.M.F. deGroot, C.T. Chen, F. Sette, C.A. Kipke, D.M. Eichhorn, M.K. Chan, W.H. Armstrong, E. Libby, G. Christou, S. Brooker, V. McKee, O.C. Mullins, J.C. Fuggle, J. Amer. Chem. Soc., 113, 7937 (1991)

    Article  CAS  Google Scholar 

  29. G.P. Huffman, S. Mitra, F.E. Huggins, N. Shah, S. Vaidya, F. Lu, Energy and Fuels, 5, 574 (1992)

    Article  Google Scholar 

  30. G.S. Waldo, O.C. Mullins, J.E. Penner-Hahn, S.P. Cramer, Fuel, 71, 53 (1992)

    Article  CAS  Google Scholar 

  31. J.-M. Ruiz, B.M. Carden, L.J. Lena, E.-J. Vincent, J.-C. Escalier, Anal. Chem. 54, 688 (1982)

    Article  CAS  Google Scholar 

  32. M.L. Gorbaty, G.N. George, S.R. Kelemen, Fuel 69, 1065 (1990)

    Article  CAS  Google Scholar 

  33. G.P. Huffman, F.E. Huggins, H.E. Francis, S. Mitra, N. Shah, “Process. Util. High-Sulfur Coals,” R. Markuszewski, T.D. Wheelock, (Ed.), Elsevier, New York (1990)

    Google Scholar 

  34. R.C. Neaval, “Chemistry of Coal Utilization,” M.A. Elliott, ( Ed.) John Wiley and Sons, New York (1981)

    Google Scholar 

  35. R.M. Davidson, “Coal Science,” I.G. Dryden, (Ed.) Academic Press, New York, Vol. 1 (1982)

    Google Scholar 

  36. M.W. Haenel, Fuel, 71, 1213 (1992)

    Article  Google Scholar 

  37. M.L. Gorbaty, G.N. George, S.R. Kelemen, Fuel 69, 945 (1990)

    Article  CAS  Google Scholar 

  38. S.R. Kelemen, G.N. George, M.L. Gorbaty Fuel 69, 939 (1990)

    Article  CAS  Google Scholar 

  39. K.S. Vorres, Energy and Fuels, 4, 420 (1990)

    Article  CAS  Google Scholar 

  40. L.M. Stock, R. Wolny, B. Bal, Energy and Fuels, 3, 651 (1989)

    Article  CAS  Google Scholar 

  41. A.G. Douglas, B.J. Mair, Science, 147, 499 (1965)

    Article  CAS  Google Scholar 

  42. M. Kasrai, J.R. Brown, G.M. Bancroft, K.H. Tran, J.-M. Chen, Fuel, 69, 411 (1990)

    Article  CAS  Google Scholar 

  43. S.P. Cramer, O. Tench, M. Yocum, H. Kraner, L. Rogers, V. Radek, O.C. Mullins, S. Rescia, “X-ray Absorption Fine Structure -Proceedings of the 6th lnternl. XAFS Conf.” S.S. Hasnian (Ed.), Ellis Horwood, Chichester 640 (1991)

    Google Scholar 

  44. C.T. Chen, Y. Ma, F. Sette, Phys, Rev. A. 40, 6737 (1989)

    Article  CAS  Google Scholar 

  45. J. Stohr, R. Jaeger, Phys. Rev. B26, 4111 (1982)

    Article  CAS  Google Scholar 

  46. J.L. Dehmer, D. Dill, Phys. Rev. Lett. 35, 313 (1975)

    Google Scholar 

  47. J. Stohr, J.L. Gland, W. Eberhardt, D. Outka, R.J. Madix, F. Sette, R.J. Koestner, U. Doebler, Phys. Rev. Lett., 51, 2414, (1983)

    Article  Google Scholar 

  48. S. Mitra-Kirtley, O.C. Mullins, J. van Elp, S.P. Cramer, Fuel, 72, 133 (1993)

    Article  Google Scholar 

  49. S. Mitra-Kirtley, O.C. Mullins, J. van Elp, S.J. George, J. Chen, S.P. Cramer, J. Amer. Chem. Soc., 115, 252 (1993)

    Article  CAS  Google Scholar 

  50. O.C. Mullins, S. Mitra-Kirtley, S.P. Cramer, private communication

    Google Scholar 

  51. M. Gouterman, “The Porphyrins,” D. Dolphin, (Ed.), Academic Press, New York (1978)

    Google Scholar 

  52. S. Mitra-Kirtley, O.C. Mullins, J. Chen, J. van Elp, S. George, C.T. Chen, T. O’Halloran, S.P. Cramer, Biochim. Biophys. Acta, 1132, 249 (1992)

    Article  Google Scholar 

  53. W. Saenger, “Principles of Nucleic Acid Structure,” Springer-Verlag, New York (1984)

    Google Scholar 

  54. S. Mitra-Kirtley, O.C. Mullins, J.F. Branthaver, S.P. Cramer, Energy and Fuels, 7, 1128 (1993)

    Article  CAS  Google Scholar 

  55. A.L. Johnson, E.L. Mutterties, J. Stohr, F. Sette, J. Phys. Chem., 89, 4075 (1985)

    Article  Google Scholar 

  56. P. Skytt, J. Guo, N. Wassdahl, J. Nordgren, submitted Phys. Rev. Lett.

    Google Scholar 

  57. B. Durand, (Ed.) “Kerogen: Insoluble Organic Matter from Sedimentary Rocks,” Editions Technip., Paris (1978)

    Google Scholar 

  58. E.C. Copelin, Anal. Chem. 36, 2274 (1964)

    Article  CAS  Google Scholar 

  59. J.C. Petersen, R.V. Barbour, S.M. Dorrence, F.A. Barbour, R.V. Helm, Anal. Chem., 43, 1491 (1971)

    Article  CAS  Google Scholar 

  60. S.P. Preece, J.F. Branthaver, S.-S. Kim, Div. Fuel Chem., Amer. Chem. Soc. Preprints, 37, 1342 (1992)

    CAS  Google Scholar 

  61. J.C. Petersen, J. Phys. Chem., 75, 1129 (1971)

    Article  CAS  Google Scholar 

  62. A. Wilhelms, R.L. Pateience, S.R. Larter, S. Jorgensen, Geochim. Cosmoschim. Acta. 56, 3745 (1992)

    Article  CAS  Google Scholar 

  63. M.Z. Zeller, R.G. Hayes, J. Amer. Chem. Soc. 95, 3885 (1973)

    Article  Google Scholar 

  64. P.G. Gassman, A. Ghosh, J. Almlof, J. Amer. Chem. Soc., 114, 9990 (1992)

    Article  CAS  Google Scholar 

  65. S. Muralidharan, R.G. Hayes, J. Amer. Chem. Soc., 102, 5107 (1980)

    Article  Google Scholar 

  66. L.E. Hamilton, P.A. Sherwood, B.M. Reagan, Appl. Spectrosc., 47, 139 (1993)

    Article  CAS  Google Scholar 

  67. Y. Niwa, H. Kobayashi, T. Tsuchiya, Inorg. Chem. 13, 2891 (1974)

    Article  CAS  Google Scholar 

  68. O.C. Mullins, S. Mitra-Kirtley, J. van Elp, S.P. Cramer, Appl. Spectrosc. 47, 1268 (1993)

    Article  CAS  Google Scholar 

  69. D.W. Later, M.L. Lee, B.W. Wilson. Anal. Chem. 54. 117 (1982)

    Article  CAS  Google Scholar 

  70. R.B. Jones, C.B. McCourt, P. Swift, “Proceedings Intern]. Conf. on Coal Science, Dusseldorf,” Verlag Gluckauf, Essen 657 (1981)

    Google Scholar 

  71. S. Wallace, K.D. Bartle, D.L. Perry, Fuel, 68, 1450 (1989)

    Article  CAS  Google Scholar 

  72. S.R. Kelemen, M.L. Gorbarty, P.J. Kwiatek, Energy and Fuels, 8, 896 (1994)

    Article  CAS  Google Scholar 

  73. D.L. Perry, A. Grint, Fuel, 62, 1029 (1983)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mullins, O.C. (1995). Sulfur and Nitrogen Molecular Structures in Asphaltenes and Related Materials Quantified by XANES Spectroscopy. In: Sheu, E.Y., Mullins, O.C. (eds) Asphaltenes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9293-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9293-5_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9295-9

  • Online ISBN: 978-1-4757-9293-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics