Skip to main content

Colloidal Properties of Asphaltenes in Organic Solvents

  • Chapter
Asphaltenes

Abstract

Asphaltene is a component of the petroleum liquids defined operationally. It represents the most refractory (or the heaviest) fraction. A generally accepted definition of asphaltenes is by their solvent solubility. The fraction insoluble in heptane (or pentane) but soluble in toluene is called asphaltene [1]. This fraction usually has high apparent molecular weight (often measured by vapor pressure osmometry, VPO). Because it is very refractory, asphaltenes cannot be refined with currently technology. Thus, in many vacuum residua, asphaltene is the main component. In addition to the non-refinerable nature, asphaltene has been known to initiate wellbore plugging, pipeline deposition; hinder the refining yields, and initiate coking, et cetera. Such hinderance on production and processing have made asphaltene one of the most focused materials in petroleum research. The ultimate goal is to either separate asphaltene from the petroleum liquids before entering the refining processes or “upgrade” it to a less refractory (or lighter) fraction. For both cases, one needs to understand the fundamental chemistry of asphaltene.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. P. Pfeiffer, The Properties of Asphaltic Bitumen. Elsevier, Amsterdam, 285 pp. (1950); J. G. Speight, The chemistry and Technology of Petroleum. Marcel Dekker, New York, (1980); J. G. Speight, Fuel Science and Technology Handbook. Marcel Dekker, New York 1193 pp (1990).

    Google Scholar 

  2. T. F. Yen, Am. Chem. Soc., Div Petrol. Chem. Preprint, 17 (1): 102–104 (1972); T.F. Yen, Energy Source, 1(4): 447–463 (1974); T.F. Yen, The role of asphaltene in heavy crude and tar sands. In: R.F. Meyer and C.T. Steele (Editors), The Future of Heavy Crude and Tar Sands, McGraw-Hill, New York, pp 174–179 (1980); J.W. Bunger and N.C. Li, Chemistry ofAsphaltenes. Advances in Chemistry Series 195. American Chemical Society, Washington D.C. (1981); T.F. Yen and G.V. Chilingarian (editor) Asphaltenes and Asphalts, 1, Elservier, Amsterdam (1994); M.K. Sharma and T.F. Yen (editors) Asphaltene Particles in Fossil Fuel Exploration, Recovery, Refining, and Production Processes, Plenum Press, New York (1994).

    Google Scholar 

  3. F.J. Nellenstcyn, Chem. Weekblad, 28, 313 (1931); F. J. Nellensteyn and N. M. Roodenburg, Chem.-Zeiyung, 545, 819 (1930).

    Google Scholar 

  4. C. Mack, Phvs. Chem., 36. 2901 (1932).

    CAS  Google Scholar 

  5. J. P. Pfeiffer and R. N. J. Saal, J. Phys. Chem., 44. 139 (1940).

    CAS  Google Scholar 

  6. M. J. Rosen, Surfactants and Interfacial Phenomena, 2nd ed., John Wiley and Sons, New York (1988).

    Google Scholar 

  7. E. Y. Sheu, M. M. De Tar, D. A. Storm. and S. J. DeCanio, Fuel, 71, 299 (1992).

    Article  CAS  Google Scholar 

  8. S. I. Anderson and K. S. Birdi, J. Coll. Int. Sci., 142, 497 (1991).

    Article  Google Scholar 

  9. J.P. Dickie and T.F. Yen, Anal. Chem., 39(14) 1487–1852 (1972); T.F. Yen, Adv. Chem. Ser., 195: 39–51 (1981).

    Google Scholar 

  10. Marusk H. P., and Rao, B. M. L., Fuel Sci. and Tech. Int., 5 (2) 119 (1987).

    Article  Google Scholar 

  11. B. Shiffert, J. Kuczinski. and E. J. Papirer, J. Coll. Int. Sci., 135, 107 (1990).

    Article  Google Scholar 

  12. E.Y. Sheu, M.M. De Tar and D.A. Storm, Surface activity and dynamics of asphaltenes, In: M.K. Sharma and T.F. Yen (editors) Asphaltene Particles in Fossil Fuel Exploration, Recovery, Refining, and Production Processes, 115 pp, Plenum Press, New York (1994).

    Google Scholar 

  13. S.E. Taylor, Fuel, 71, 1338 (1992).

    Article  Google Scholar 

  14. E.Y. Sheu and D.A. Storm, Fuel, 73. 1368 (1994).

    Article  CAS  Google Scholar 

  15. E.Y. Sheu, M.M. De Tar and D.A. Storm, Fuel 70, 1151 (1991); E.Y. Sheu, M.M. De Tar, and D.A. Storm, Fuel Sci. Technolo. Int., 10 (4–6), 607–647 (1992).

    CAS  Google Scholar 

  16. J. Hunt, unpublished data (private communication).

    Google Scholar 

  17. R. Pal and E. Rhodes, J. Rheology, 33, 1021 (1989).

    Article  CAS  Google Scholar 

  18. H. Eiler, Kolloid-Z Z. Polvm., 97, 313 (1941).

    Google Scholar 

  19. G.A. Campbell and G. Forgacs, Phys. Rev. A, 41, 8 (1990).

    Google Scholar 

  20. M.J. Grimson and G. C. Barker, Europhys. Lett., 3, 511 (1987).

    Article  CAS  Google Scholar 

  21. S.P. Das and G.F. Masenko, Phys. Rev. Lett., 54, 118 (1985).

    Article  CAS  Google Scholar 

  22. E. Y. Sheu, Phvs. Rev. A., 45, 2428 (1992).

    Article  Google Scholar 

  23. L. A. Feigin and D. I. Svergun, Structure Analysis By Small Angle X-ray and Neutron Scattering, Plenum Press, New York (1987).

    Google Scholar 

  24. L. S. Ornstein and F. Zernike, Proc. Akad. Sci., 17, 793 (1914).

    Google Scholar 

  25. J. K. Percus and G. J. Yeciv, Phys. Rev., 110, 1 (1958).

    Article  CAS  Google Scholar 

  26. J. B. Haytcr and J. Penfold, J. Chem. Soc. Faraday Trans. 1, 77, 1851 (1981).

    Google Scholar 

  27. R. J. Baxter, J. Chem. Phys., 52, 4559 (1970).

    Article  CAS  Google Scholar 

  28. L. Blum and J. S. Hoye, J. Phys. Chem., 81, 131 1 (1977).

    Google Scholar 

  29. E.Y. Sheu, K.S. Liang, S.K. Sinha, and R.E. Overfield, J. Coll. Int. Sci., 153, 399 (1992).

    Article  CAS  Google Scholar 

  30. S. H. Chen and J. Teixeira. Phys. Rev. Lett., 57, 2583 (1985).

    Article  Google Scholar 

  31. D. Stauffer, in On Growth and Form, edited by H. E. Stanley and N. Ostrowsky, Martinus Nijhoff Publisher, New York (1986).

    Google Scholar 

  32. H. E. Stanley and N. Ostrowsky eds, On Growth and Form, Martinus Nijhoff Publisher, New York (1986).

    Google Scholar 

  33. D. P. Landau and F. Family, Eds.. Kinetics of Aggregation and Gelation, North Holland, Amsterdam, (1984).

    Google Scholar 

  34. R. Pynn and A. Skeltorp, Eds. Scaling Phenomena in Disordered System, Plenum New York (1986).

    Google Scholar 

  35. J. Feder, Fractal, Plenum, New York (1988).

    Google Scholar 

  36. S. H. Chen, J. Rouch and P. Tartaglia, Croatica Chemica Acta, 65(2) 353 (1992).

    Google Scholar 

  37. P. Raghunathan, Fractal dimension in polymeric amorphous materials determined by electron spin relaxation measurements: A study of asphaltene polymers. In. C. L. Khetrapal and G. Govil (Editors), Magnetic Resonance, page 324–332, Narosa Publishing House, New Delhi, India (1991);P. Raghunathan, Chem. Phys. Lett., 182, 331 (1991).

    Google Scholar 

  38. P. Ekwall, In. Advances in Liquid Crystal; G. H. Brown, Ed., Academic Press, New York 1, (1975).

    Google Scholar 

  39. M. Borkovec, J. Chen. Phvs., 91 (19) 6268 (1989).

    Article  CAS  Google Scholar 

  40. A. S. Janardhan and G. Mansoori, J Petrol. Sci. Eng., 9, 17 (1993).

    Article  CAS  Google Scholar 

  41. E.Y. Sheu, M.M. De Tar, and D.A. Storm, Fuel, 73, 45 (1994).

    Article  CAS  Google Scholar 

  42. Cole, K.S., Cole, R.H., J. Chem. Phys., 9 341 (1941)

    Article  CAS  Google Scholar 

  43. E.Y. Sheu, D.A. Storm and M.M. De Tar, J. Non-crystal. Sloids, 131–133, 347 (1991).

    Google Scholar 

  44. Battacharya, S., Stokes, J.P., Kim, M.W., and Huang, J.S., Phys. Rev Let., 55 (1985) 1884.

    Article  Google Scholar 

  45. Ponton, A., Bose, T. K., and Delbos, G., J. Chem. Phys., 94 (1991) 6879

    Article  CAS  Google Scholar 

  46. Storm, D. A., “Temperature Dependent Rheological Study of Vacuum Residue” presented at the Peterson Asphalt Research Conference, the 13th Annual Meeting, Laramie, Wyoming, July 12–14. 1993

    Google Scholar 

  47. Vogler, E.A., J. Coll. Int. Sci., 133, 228 (1989).

    Article  CAS  Google Scholar 

  48. E.M. Trujillo, Soc. Petro. Eng. AIME, 645, Aug. (1983).

    Google Scholar 

  49. H.A. Nasr-El-Din, B.F. Hawkins and K.A. Green, Preproint, Int. Svmp. on Oilfield and Geothermal Chemistry,Feb. 20–22, Anaheim, CA., paper SPE 21028 (1991).

    Google Scholar 

  50. H.A. Nasr-El-Din and K.C. Taylor, Coll. Surfaces, 66, 23 (1990).

    Article  Google Scholar 

  51. E.Y. Sheu, M.B. Shields, and D.A. Storm, Fuel, 73, 1766 (1994).

    Article  CAS  Google Scholar 

  52. I.M. Krieger and T.J. Dougherty, Trans. Soc. Rheology 3, 137–152 (1959).

    Article  CAS  Google Scholar 

  53. R. C. Ball and P. Richmon, Phys. Chem. Lig., 9, 99 (1980).

    CAS  Google Scholar 

  54. J. Brady, J. Chem Phys., 99, 569 (1993).

    Article  Google Scholar 

  55. M. Mooney, J. Coll. Int. Sci., 6, 162 (1951).

    Article  CAS  Google Scholar 

  56. D. Bedeaux, J Coll. Int. Sci., 118, 80 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sheu, E.Y., Storm, D.A. (1995). Colloidal Properties of Asphaltenes in Organic Solvents. In: Sheu, E.Y., Mullins, O.C. (eds) Asphaltenes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9293-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9293-5_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9295-9

  • Online ISBN: 978-1-4757-9293-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics