Skip to main content

Special Automorphic Forms on PGSp 4

  • Chapter
Arithmetic and Geometry

Part of the book series: Progress in Mathematics ((PM,volume 35))

Abstract

In a classical situation special automorphic forms were studied by Maass. Let us recall their definition. Denote by H the Siegel half plane of genus 2. Consider Siegel’s modular forms of a given weight with respect to the Siegel full modular group. It is known that they have the following Fourier decomposition:

$$f(Z)\, = \,\sum {{a_T}} \,\exp \,2\pi itr(TZ),$$

where T runs over the matrices of the form \((\begin{array}{*{20}{c}} n \\ {r/2} \end{array}\,\begin{array}{*{20}{c}}{r/2} \\ m \end{array})\) ; n, r, mZ. Put d T = 4nmr 2, e T = (n,r, m). The Maass space (following Zagier) is the space of those f (Z)such that the coefficients a T depend only on d T and e T . The forms which lie in the Maass space do not satisfy the Ramanujan conjecture. That was one of the reasons why Maass studied these forms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Zagier, Sur la conjecture de Saito-Kurokawa (D’apres H. Maass), Seininaire de Théorie des Nombres, Paris 1979–80. Séminaire Délange-Pisot-Poitou. Birkhiiuser.

    Google Scholar 

  2. H. Maass, Über eine Spezialschar von Modulformen zweiten Grades. Invent. Math. 52 (1979), 95–104.

    Article  MathSciNet  MATH  Google Scholar 

  3. I. I. Piatetski-Shapiro, On the Saito-Kurokawa lifting. Preprint. February 1981.

    Google Scholar 

  4. M. F. Novodvorsky and I. I. Piatetski-Shapiro, Generalized Bessel models for the symplectic group of rank 2, Mat. Sb. 90 (2) (1973), 246–256.

    MathSciNet  Google Scholar 

  5. I. I. Piatetski-Shapiro, L-functions for GSp( 4 Preprint.

    Google Scholar 

  6. I. M. Gelfand and N. Ya. Vilenkin, Generalized functions, Vol. 4, Academic Press, 1964.

    Google Scholar 

  7. R. Howe and C. Moore, Asymptotic properties of unitary representations. J. Fun. Anal. 32 (1979), 72–96.

    Article  MathSciNet  MATH  Google Scholar 

  8. R. Howe, O series and invariant theory, Proc. Symp. Pure Math., XXXIII, Part I, 275–286.

    Google Scholar 

  9. R. Howe, The notion of rank for representations. Preprint.

    Google Scholar 

  10. R. Howe and I. I. Piatetski-Shapiro, Some examples of automorphic forms on GSp 4 . Preprint.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer Science+Business Media New York

About this chapter

Cite this chapter

Piatetski-Shapiro, I.I. (1983). Special Automorphic Forms on PGSp 4 . In: Artin, M., Tate, J. (eds) Arithmetic and Geometry. Progress in Mathematics, vol 35. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4757-9284-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9284-3_13

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-0-8176-3132-1

  • Online ISBN: 978-1-4757-9284-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics