Skip to main content

Abstract

The spectroscopy and dynamics of doubly charged molecular cations in the gas phase are nowadays intensively studied by means of several complementary experimental techniques. In the oldest exploited class of experiments dications are produced by decay of core ionized molecules via electron emission. This is the basis of Auger electron spectroscopy (AES) [1], where the number of emitted electrons is measured as a function of their kinetic energy. In recent developments, vibrationally resolved Auger spectra have been obtained [2–4] and additional information on the nature of the dicationic states populated can be gained via the coincidence detection of Auger electrons and the sufficiently long-lived dications or their fragmentation products [5,6]. In a second important class of techniques the doubly charged cations are produced directly from their neutral parent species. In double charge transfer spectroscopy [7] this is achieved by collision of protons impinging on the target molecules. The one-step two-electron removal channel can be identified by its specific pressure dependence and the energy loss of the detected H- ions is measured. Dicationic species can also be obtained by electron impact, and their lowest lying states observed by translational energy loss spectroscopy [8], or by collisional charge stripping from singly charged precursors [9]. Finally, in recent years, new powerful techniques have been successfully established, [10–12] based on direct double photoionization from synchrotron radiation, followed by the coincidence detection of photoelectrons and/or photoions (either long-lived dications or charged fragments).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. a) K.Siegbahn, C.Nordling, G.Johansson, J.Hedman, P.F.Heden, K.Hamrin, U.Gelius, T.Bergmark, L.O.Werme, R.Manne and Y.Baer, “ESCA Applied to Free Molecules” (North-Holland, Amsterdam, 1971 ); (b) M.Thompson, M.D.Baker, A.Christie and J.F.Tyson, “Auger Electron Spectroscopy” ( Wiley, New York, 1985 ).

    Google Scholar 

  2. See also: T.X.Carroll and T.D.Thomas, J.Chem.Phys. 86, 5221 (1987).

    Article  Google Scholar 

  3. L.Karlsson, P.Baltzer, S.Svensson and B.Wannberg, Phys.Rev.Lett. 24, 2473 (1988); S.Svensson, L.Karlsson, P.Baltzer, M.P.Keane and B.Wannberg, Phys.Rev.A 40, 4369 (1989).

    Article  Google Scholar 

  4. A.Cesar, H.Agren, A.Naves de Brito, S.Svensson, L.Karlsson, M.P.Keane, B.Wannberg, P.Baltzer, P.G.Fournier and J.Fournier, J.Chem.Phys. 93, 918 (1990).

    Article  Google Scholar 

  5. W.Eberhardt, E.W.Plummer, I.W.Lyo, R.Reininger, R.Carr, W.K.Ford and D. Sondericker, Aust.J.Phys. 39, 633 (1986).

    Article  Google Scholar 

  6. D.A.Lapiano-Smith, C.I.Ma, K.T.Wu and D.M.Hanson, J.Chem.Phys. 90, 2162 (1989).

    Article  Google Scholar 

  7. J.Appell, J.Durup, F.C.Fehsenfeld and P.G.Fournier, J.Phys.B 6, 197 (1973); P.G. Fournier, J.Fournier, F.Salama, D.Stärck, S.D.Peyerimhoff and J.H.D.Eland, Phys.Rev.A 34, 1657 (1986).

    Google Scholar 

  8. See, e.g., M.Hamdan, S.Mazumdar, V.R.Marathe, C.Badrinathan, A.G.Brenton and D.Mathur, J.Phys.B 21, 2571 (1988) and references therein.

    Google Scholar 

  9. R.G.Cooks, T.Ast and J.H.Beynon, Int.J.Mass Spectrom.Ion Phys. 11, 490 (1973); D.Mathur and C.Bandrinathan J.Phys.B 20, 1517 (1987) and references therein.

    Google Scholar 

  10. G.Dujardin, S.Leach, O.Dutuit, P.M.Guyon and M.Richard-Viard, Chem.Phys. 88, 339 (1984); G.Dujardin, L.Hellner, D.Winkoun and M.J.Besnard, Chem.Phys. 105, 291 (1986).

    Article  Google Scholar 

  11. P.Lablanquie, I.Nenner, P.Millié, P.Morin, J.H.D.Eland, M.-J.Hubin-Franskin and J.Delwiche, J.Chem.Phys. 82, 2951 (1985); P.Lablanquie, J.H.D.Eland, I.Nenner, P.Morin, J.Delwiche and M.-J.Hubin-Franskin, Phys.Rev.Lett. 58, 992 (1987); J.H.D.Eland, S.D.Price, J.C.Cheney, P.Lablanquie, I.Nenner and P.G.Fournier, Phil.Trans.R.Soc.Lond.A 324, 247 (1988).

    Google Scholar 

  12. P.Lablanquie, J.Delwiche, M.-J.Hubin-Franskin, I.Nenner, P.Morin, K.Ito, J.H.D.Eland, J.-M.Robbe, G.Gandara, J.Fournier and P.G.Fournier, Phys.Rev.A 40, 5673 (1989).

    Article  Google Scholar 

  13. K.Faegri, jr. and H.P.Kelly, Phys.Rev.A 19, 1649 (1979); M.Higashi, E.Hiroike and T.Nakajima, Chem.Phys. 68, 377 (1982), Chem.Phys. 85, 133 (1984); F.P.Larkins and J.A.Richards, Aust.J.Phys. 39, 809 (1986).

    Article  Google Scholar 

  14. V.Carravetta and H.Agren, Phys.Rev.A 35, 1022 (1987); R.Colle and S.Simonucci, Phys.Rev.A 42, 3913 (1990); K.Zähringer, H.-D.Meyer and L.S.Cederbaum, “Molecular scattering wavefunctions for Auger decay rates: the Auger spectrum of hydrogen fluoride”, Phys.Rev.A (submitted for publication).

    Google Scholar 

  15. A.Cesar, H.Agren and V.Carravetta, Phys.Rev.A 40, 187 (1989).

    Article  Google Scholar 

  16. H.Agren, J.Chem.Phys. 75, 1267 (1981).

    Article  Google Scholar 

  17. W.von Niessen, J. Schirmer and L.S.Cederbaum, Comput.Phys.Rep. 1, 57 (1984); (c) L.S.Cederbaum, Int.J.Quant.Chem.Symp. 24, 393 (1990).

    Google Scholar 

  18. J.Schirmer and A.Barth, Z.Phys.A 317, 267 (1984).

    Article  Google Scholar 

  19. A.Tarantelli and L.S.Cederbaum, Phys.Rev.A 39, 1656 (1989).

    Article  Google Scholar 

  20. A.Tarantelli and L.S.Cederbaum, Phys.Rev.A 39, 1639 (1989).

    Article  Google Scholar 

  21. J.Schirmer, Phys.Rev.A 43, 4647 (1991).

    Article  Google Scholar 

  22. F.Tarantelli, A.Tarantelli, A.Sgamellotti, J.Schirmer and L.S.Cederbaum, Chem.Phys.Lett. 117, 577 (1985); F.Tarantelli, A.Tarantelli, A.Sgamellotti, J.Schirmer and L.S.Cederbaum, J.Chem.Phys. 83, 4683 (1985); F.Tarantelli, J.Schirmer, A.Sgamellotti and L.S.Cederbaum, Chem.Phys.Lett. 122, 169 (1985).

    Google Scholar 

  23. F.Tarantelli, A.Sgamellotti, L.S.Cederbaum and J.Schirmer, J.Chem.Phys. 86, 2201 (1987).

    Article  Google Scholar 

  24. E.Ohrendorf, H.Köppel, L.S.Cederbaum, F.Tarantelli and A.Sgamellotti, J.Chem.Phys. 91, 1734 (1989).

    Article  Google Scholar 

  25. E.Ohrendorf, F.Tarantelli and L.S.Cederbaum, J.Chem.Phys. 92, 2984 (1990).

    Article  Google Scholar 

  26. F.Tarantelli, A.Sgamellotti and L.S.Cederbaum, J.Chem.Phys. 94, 523 (1991).

    Article  Google Scholar 

  27. C.-M.Liegener, Chem.Phys. Letters 106, 201 (1984); (c) C.-M.Liegener, Chem.Phys. 92, 97 (1985)

    Article  Google Scholar 

  28. R.L.Graham and D.L.Yeager, J.Chem.Phys. 94, 2884 (1991).

    Article  Google Scholar 

  29. J.Schirmer, Phys.Rev.A 26, 2395 (1982); J.Schirmer, L.S.Cederbaum and O.Walter, Phys.Rev.A 28, 1237 (1983).

    Article  Google Scholar 

  30. A.L.Fetter and J.D.Walecka, “Quantum Theory of Many-Particle systems” ( McGraw-Hill, New York, 1971 ).

    Google Scholar 

  31. R.R.Rye and J.E.Houston, J.Chem.Phys. 78, 4321 (1983).

    Article  Google Scholar 

  32. J.V.Ortiz, J.Chem.Phys. 81, 5873 (1984).

    Article  Google Scholar 

  33. M.Cini, F.Maracci and R.Platania, J.Electr.Spectr.Rel.Phen. 41, 37 (1986).

    Article  Google Scholar 

  34. V.Pellizzari, F.Tarantelli, A.Sgamellotti and L.S.Cederbaum, to be published.

    Google Scholar 

  35. L.S.Cederbaum, F.Tarantelli, A.Sgamellotti and J.Schirmer, J.Chem.Phys. 85, 6513 (1986); 86, 2168 (1987).

    Google Scholar 

  36. R.R.Rye, D.R.Jennison and J.E.Houston, J.Chem.Phys. 73, 4867 (1980); T.D. Thomas and P.Weightman, Chem.Phys.Lett. 81, 325 (1981); P.Weightman, T.D. Thomas and D.R.Jennison, J.Chem.Phys. 78, 1652 (1983).

    Article  Google Scholar 

  37. J.A.Kelber, D.R. Jennison and R.R.Rye, J.Chem.Phys. 75, 652 (1981);

    Article  Google Scholar 

  38. W.Eberhardt, E.W.Plummer, C.T.Chen, W.K.Ford, Aust.J.Phys. 39, 853 (1986).

    Article  Google Scholar 

  39. L.S.Cederbaum, P.Campos, F.Tarantelli and A.Sgamellotti, “Bandshape and vibrational structure in Auger spectra: theory and application to carbon monoxide”, J.Chem.Phys. (submitted for publication).

    Google Scholar 

  40. F.Kaspar, W.Domcke and L.S.Cederbaum, Chem.Phys. 44, 33 (1979).

    Article  Google Scholar 

  41. F.K.Gel’mukhanov, L.N.Mazalov, A.V.Nikolaev, A.V.Kondratenko, V.G.Smirnii, P.I.Wadash and A.P.Sadovskii, Dokl.Akad.Nauk SSSR 225, 597 (1975); F.K.Gel’mukhanov, L.N.Mazalov, and A.V.Kondratenko, Chem.Phys.Letters 46, 133 (1977).

    Article  Google Scholar 

  42. H.Köppel, W.Domcke and L.S.Cederbaum, Adv.Chem.Phys. 57, 59 (1984).

    Article  Google Scholar 

  43. H.C.Longuet-Higgins, U.Öpik, M.H.L.Pryce and R.A.Sack, Proc.Roy.Soc.(London) A244, 1 (1958); R.Englman, “The Jahn-Teller Effect” ( Wiley, New York, 1972 ).

    Google Scholar 

  44. G.Wentzel, Z.Physik 43, 521 (1927).

    Google Scholar 

  45. R.Manne and H.Agren, Chem.Phys. 93, 201 (1985).

    Article  Google Scholar 

  46. As originally suggested in H.Siegbahn, L.Asplund, P.Kelfve, Chem.Phys.Lett. 35, 330 (1975).

    Article  Google Scholar 

  47. T.A.Green and D.R.Jennison, Phys.Rev.B 36, 6112 (1987).

    Article  Google Scholar 

  48. T.H.Dunning, J.Chem.Phys. 53, 2823 (1970); R.Ahlrichs and P.R.Taylor, J.Chim. Phys. 78, 315 (1981).

    Google Scholar 

  49. C.Benoit and J.A.Horsley, Mol.Phys. 30, 557 (1975).

    Article  Google Scholar 

  50. R.R.Rye, T.E.Madey, J.E.Houston and P.H.Holloway, J.Chem.Phys. 69, 1504 (1978).

    Article  Google Scholar 

  51. D.R.Jennison, Chem.Phys.Letters, 69, 435 (1980).

    Article  Google Scholar 

  52. F.Tarantelli, A.Sgamellotti and L.S.Cederbaum, to be published.

    Google Scholar 

  53. M.Thompson, P.A.Hewitt and D.S.Wooliscroft, Anal.Chem. 48, 1336 (1976).

    Article  Google Scholar 

  54. R.Spohr, T.Bergmark, N.Magnusson, L.O.Werme, C.Nordling and K.Siegbahn, Phys.Scr. 2, 31 (1970).

    Article  Google Scholar 

  55. A.Denis, J.Langlet and J.P.Malrieu, Theor.Chim.Acta, 38, 49 (1975); L.S.Cederbaum and W.Domcke, J.Chem.Phys. 66, 5084 (1977).

    Article  Google Scholar 

  56. W.E.Moddeman, T.A.Carlson, M.O.Krause, B.P.Pullen, W.E.Bull and G.K. Schweitzer, J.Chem.Phys. 55, 2317 (1971).

    Article  Google Scholar 

  57. L.Ungier and T.D.Thomas, J.Chem.Phys. 82, 3146 (1985).

    Article  Google Scholar 

  58. H.Agren and H.Siegbahn, Chem.Phys.Letters 72, 498 (1980).

    Article  Google Scholar 

  59. I.H.Hillier and J.Kendrick, Mol.Phys. 31, 849 (1976); D.R.Jennison, J.A.Kelber and R.R.Rye, Chem.Phys. Letters 77, 604 (1981); G.E.Laramore, Phys.Rev.A 29, 23 (1984).

    Google Scholar 

  60. M.Larsson, B.J. Olsson and P.Sigray, Chem.Phys. 139 457 (1989), and references therein.

    Google Scholar 

  61. V.R.Marathe and D.Mathur, Chem.Phys.Letters 163, 189 (1989).

    Article  Google Scholar 

  62. T.H.Dunning, J.Chem.Phys. 55, 716 (1971).

    Article  Google Scholar 

  63. K.P.Huber and G.Herzberg, “Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules” ( Van Nostrand Reinhold, New York, 1979 ).

    Google Scholar 

  64. M.Tronc, G.C.King, R.C.Bradford and F.H.Read, J.Phys.B 9, L555 (1976).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tarantelli, F., Sgamellotti, A., Cederbaum, L.S. (1992). Recent Developments in the Calculation of Molecular Auger Spectra. In: Mukherjee, D. (eds) Applied Many-Body Methods in Spectroscopy and Electronic Structure. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9256-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9256-0_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9258-4

  • Online ISBN: 978-1-4757-9256-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics