Skip to main content

Pressure Ionization and Density Diagnostics in Subpicosecond Laser-Produced Plasmas

  • Chapter
Applications of High-Field and Short Wavelength Sources
  • 185 Accesses

Abstract

The atomic physics of high-density plasmas is studied extensively for its relevance to astrophysics1, inertial confinement fusion,2,3 x-ray lasers,4 and to the interaction of ultrashort lasers with solids. 5-7 Of utmost importance is the knowledge of the plasma parameters of electron density, Ne, and temperature, Te, as they govern the atomic physics in the plasma, from its ionization balance to its emission and absorption. The structure and behavior of atoms and ions, for example, can be radically affected by the presence of strong fields in high-density plasmas1, leading to such effects as extreme line broadening and pressure ionization.1,2,9 Pressure ionization and line-merging have been used in laboratory plasmas as a density diagnostic of spatially- and/or temporally-integrated spectra. 2,10–13 But in laser-produced plasmas, conditions often vary rapidly over time and space, so it is important to resolve both these dimensions for accurate diagnostics. Furthermore, several models are available to quickly extract densities from spectroscopic data but are very different and need to be carefully benchmarked in order to identify which apply for any given set of plasma parameters. Precise data for model validation is rare and usually comes from plasmas limited in density and temperature range.13 Here, we compare four models under a wide range of densities and temperatures in plasmas created with ultrafast laser pulses. These 100-fs laser pulses have the advantage over nanosecond pulses of depositing the energy of the laser impulsively, in a small target layer. Thus, the spectroscopic measurements are conducted after the laser pulse, in a freely expanding plasma, without the added complication of further energy deposition during the plasma evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Brush and B.H. Armstrong, Proc. Workshop on Lowering of the Ionization Potential, JILA report 79, ( Univ. of Colorado, Boulder, CO 1965 ).

    Google Scholar 

  2. C.M. Lee and A. Hauer, Appl. Phys. Lett. 33, 692 (1978).

    Article  ADS  Google Scholar 

  3. B.A. Hammel, C.J. Keane, M.D. Cauble, D.R. Kania, J.D. Kilkenny, R.W. Lee, and R. Pasha, Phys. Rev. Lett. 70, 1263 (1993).

    Article  ADS  Google Scholar 

  4. Atomic Processes in Plasma,AIP Conf. Proc. 257 E.S. Mannar, J.L. Terry, eds. (American Institute of Physics, New York, NY, 1992), and references therein.

    Google Scholar 

  5. A. Rousse, P. Audebert, J.P. Geindre, F. Falliès, J.C. Gauthier, A. Mysyrowicz, G. Grillon, and A. Antonetti, Phys. Rev. E 50, 2200 (1994).

    Article  ADS  Google Scholar 

  6. Z. Jiang, J.C. Kieffer, J.P. Matte, M. Chaker, O. Peyrusse, D. Gilles, G. Korn, A. Maksimchuk, S. Coe, and G. Mourou, Phys. Plasma 2, 1702 (1995).

    Article  ADS  Google Scholar 

  7. J. Workman, A. Maksimchuk, X. Liu, U. Ellenberger, J.S. Coe, C.Y. Chien, and D. Umstadter, Phys. Rev. Lett. 75, 2324 (1995).

    Article  ADS  Google Scholar 

  8. Spectral Line Broadening by Plasmas,H.R. Griem (Academic Press, New York, NY, 1974).

    Google Scholar 

  9. R.M. More, J. Quant. Spectrosc. Radiat. Transfer 27, 345 (1982).

    Article  Google Scholar 

  10. G.A. Kyrala, R.D. Fulton, E.K. Wahlin, L.A. Jones, G.T. Shappert, J.A. Cobble, and A.J. Taylor, Appl. Phys. Lett. 60, 2195 (1992).

    Article  ADS  Google Scholar 

  11. P.G. Burkhalter, G. Mehlman, D.A. Newman, M. Krishnana, and R.R. Prasad, Rev. Sci. Instrum. 63, 5052 (1992).

    Article  ADS  Google Scholar 

  12. D. Riley, L.A. Gizzi, F.Y. Khattak, A.J. Mackinnon, S.M. Viana, and O. Willi, Phys. Rev. Lett. 69, 3739 (1992).

    Article  ADS  Google Scholar 

  13. D.J. Heading, G.R. Bennett, J.S. Wark, and R.W. Lee, Phys. Rev. Lett. 74, 3616 (1995).

    Article  ADS  Google Scholar 

  14. D.K. Bradley, J. Kilkenny, S. Rose, and J.D. Hares, Phys. Rev. Lett. 59, 2995 (1987).

    Article  ADS  Google Scholar 

  15. L. DaSilva, A. Ng, B.K. Godwal, G. Chiu, and F. Cottet, Phys. Rev. Lett. 62, 1623 (1989).

    Article  ADS  Google Scholar 

  16. J. Workman, M. Nantel, A. Maksimchuk, and D. Umstadter, Appl. Phys. Lett. 70, 312 (1997).

    Article  ADS  Google Scholar 

  17. J.C. Stewart and K.D. Pyatt, Jr., Astrophys. J. 144, 1203 (1966).

    Article  ADS  Google Scholar 

  18. J.A. Kunc and W.H. Soon, Astrophys. J. 396, 364 (1992).

    Article  ADS  Google Scholar 

  19. B.J.B. Crowley, Phys. Rev. A 41, 2179 (1990).

    Google Scholar 

  20. M.W.C. Dharma-wardana and F. Perrot, Phys. Rev. A 45, 5883 (1992).

    Article  ADS  Google Scholar 

  21. D.R. Inglis and E. Teller, Astrophys. J. 90, 439 (1939).

    Article  ADS  MATH  Google Scholar 

  22. J. Itatani, J. Faure, M. Nantel, G. Mourou, and S. Watanabe, submitted to Opt. Commun. (1997).

    Google Scholar 

  23. C.Y. Côté, J.C. Kieffer, P. Gallant, J.C. Rebuffie, C. Goulmy, A. Maksimchuk, G. Mourou, D. Kaplan, and M. Bouvier, SPIE Proc. 2869, 956 (1997).

    Article  ADS  Google Scholar 

  24. P. Gallant, Z. Jiang, J. Fuchs, J.C. Kieffer, H. Pépin, D. Gontier, A. Mens, N. Blanchot, J.L. Miguel, J.F. Pelletier, and M. Sutton, to be published in SPIE Proc. 3157.

    Google Scholar 

  25. A. Maksimchuk, M. Kim, J. Workman, G. Korn, J. Squier, D. Du, D. Umstadter, G. Mourou, and M. Bouvier, Rev. Sci. Instrum. 67, 697 (1996).

    Article  ADS  Google Scholar 

  26. R.L. Kelly, J. Phys. Chem. Ref. Data 16, suppl. 1, 1 (1987).

    Google Scholar 

  27. R.W. Lee, B.L. Whitten, and R.E. Stout, II, J. Quant. Spectrosc. Radiat. Transfer 32, 91 (1984).

    Article  ADS  Google Scholar 

  28. M. Nantel, G. Ma, S. Gu, C.Y. Côté, J. Itatani, and D. Umstadter, submitted to Phys. Rev. Lett. (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nantel, M., Ma, G., Gu, S., Côté, C.Y., Itatani, J., Umstadter, D. (1998). Pressure Ionization and Density Diagnostics in Subpicosecond Laser-Produced Plasmas. In: DiMauro, L., Murnane, M., L’Huillier, A. (eds) Applications of High-Field and Short Wavelength Sources. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9241-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9241-6_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9243-0

  • Online ISBN: 978-1-4757-9241-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics