Skip to main content

Quantitative Analysis of Extracellular Matrix Formation in Vivo and in Vitro

  • Chapter
Angiogenesis

Part of the book series: NATO ASI Series ((NSSA,volume 263))

  • 84 Accesses

Abstract

Angiogenesis, the formation of new blood vessels from pre-existing ones, is a fundamental process, essential in both health situations, such as reproduction, development and wound repair, as well as in diseases, such as tumor growth, diabetes and arthritis. In the first case, angiogenesis is highly regulated, i.e. turned on for brief periods of time and then completely inhibited. In the latter case, angiogenesis is persistent and unregulated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ausprunk, D.H., Knighton, D.R., and Folkman, J. (1974) Differentiation of vascular endothelium in the chick chorioallantois: A structural and autoradiographic study. Dev. Biol., 38: 237–248.

    Article  PubMed  CAS  Google Scholar 

  • Ausprunk, D.H., Dethlefsen, S.M., and Higgins, E.R. (1991) Distribution of fibronectin, laminin and type IV collagen during development of blood vessels in the chick chorioallantoic membrane. In: The development of the vascular system. R.N. Feinberg, G.K. Sherer, and R. Auerbach, eds. Karger, Basel, pp. 93–107.

    Google Scholar 

  • Ausprunk, D.H. and Folkman, J. (1977) Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis. Microvascular Research, 14: 53–65.

    Article  PubMed  CAS  Google Scholar 

  • Birdwell, C.R., Gospodarowicz, D., and Nicolson, G.L. (1978) Identification, localization, and role of fibronectin in cultured bovine endothelial cells. Proc. Natl. Acad. Sci. USA, 75(7): 3273–3277.

    Google Scholar 

  • Carley, W.W., Milici, A.J., and Madri, J.A. (1988) Extracellular matrix specificity for the differentiation of capillary endothelial cells. Exp. Cell Res., 178: 426–434.

    Article  PubMed  CAS  Google Scholar 

  • Coupland, R.E. (1965) The natural history of the chromaffin cell. Little, Brown and Co., Boston, pp. 1–279.

    Google Scholar 

  • Folkman, J. and Haudenschild, C. (1980) Angiogenesis in vitro. Nature, 288: 551–556.

    Article  PubMed  CAS  Google Scholar 

  • Form, D.M., Pratt, B.M., and Madri, J.A. (1986) Endothelial cell proliferation during angiogenesis In vitro modulation by basement membrane components. Lab. Invest., 55(5): 521–530.

    Google Scholar 

  • Grant, D.S., Lelkes, P.I., Fukuda, K., and Kleinman, H.K. (1991) Intracellular mechanisms involved in basement membrane induced blood vessel differentiation in vitro. In Vitro Cell. Dev. Biol., 27A: 327–336.

    Google Scholar 

  • Hayman, E.G. and Ruoslahti, E. (1979) Contribution of fetal bovine serum fibronectin and indogenous rat cell fibronectin in extracellular matrix. J Cell Biol., 83: 255–259.

    Article  PubMed  CAS  Google Scholar 

  • Hedin, U., Bottger, B.A., Forsberg, E., Johansson, S., and Thyberg, J. (1988) Diverse effects of fibronectin and laminin on phenotypic properties of cultured arterial smooth muscle cells. J Cell Biol., 107: 307–319.

    Article  PubMed  CAS  Google Scholar 

  • Herbst, T.J., McCarthy, J.B., Tsilibary, E.C., and Furcht, L.T. (1988) Differential effects of laminin, intact type IV collagen, and specific domains of type IV collagen on endothelial cell adhesion and migration. J Cell Biol., 106: 1365–1371.

    Google Scholar 

  • Ingber, D. and Folkman, J. (1988) Inhibition of angiogenesis through modulation of collagen metabolism. Lab. Invest., 59 (1): 44–51.

    PubMed  CAS  Google Scholar 

  • Iruela-Arispe, M.L., Hasselaar, P., and Sage, H. (1991) differential expression of extracellular proteins is correlated with angiogenesis in vitro. Lab. Invest., 64(2):174–186.

    Google Scholar 

  • Jaffe, E.A. and Mosher, D.F. (1978) Synthesis of fibronectin by cultured human endothelial cells. J. Exp. Med., 1779–1791.

    Google Scholar 

  • Kleinman, H.K., Klebe, R.J., and Martin, G.R.(1981) Role of collagenous matrices in the adhesion and growth of cells. J Cell Biol., 88: 473–485.

    Article  PubMed  CAS  Google Scholar 

  • Kowalczyk, A.P., Tulloh, R.H., and McKeown-Longo, P.J. (1990) Polarized fibronectin secretion and localized matrix assembly sites correlate with subendothelial matrix formation. Blood, 75: 2335–2342.

    PubMed  CAS  Google Scholar 

  • Kubota, Y., Kleinman, H.K., Martin, G.R., and Lawley, T.J. (1988) Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures. J Cell Biol., 107: 1589–1598.

    Article  PubMed  CAS  Google Scholar 

  • Lelkes, P.I. and Unsworth, B.R. (1992) Role of heterotypic interactions between endothelial cells and parenchymal cells in organospecific differentiation: a possible trigger of vasculogenesis. In: Angiogenesis in health and disease. M.E. Maragoudakis, P. Fullino, and P.I. Lelkes, eds. Plenum Press, New York,NY, pp. 27–43.

    Chapter  Google Scholar 

  • Levine, M. and Morita, K. (1985) Ascorbic acid in endocrine systems. In: Vitamins and hormones advances in research and applications volume 42. G.D. Aurbach and D.b. McCormick, eds. Acadmic Press,Inc., Orlando,FL, pp. 2–53.

    Google Scholar 

  • Macarak, E.J., Kirby, E., Kirk, T., and Kefalides, N.A. (1978) Synthesis of cold-insoluble.globulin by cultured calf endothelial cells. Proc. Natl. Acad. Sci. USA, 75(6): 2621–2625.

    Google Scholar 

  • Madri, J.A., Williams, S.K., Wyatt, T., and Mezzio, C. (1983) Capillary endothelial cell cultures: phenotypic modulation by matrix components. J Cell Biol., 97: 153–165.

    Article  PubMed  CAS  Google Scholar 

  • Madri, J.A., Pratt, B.M., and Yannariello-Brown, J.(1989) Endothelial cell-extracellular matrix interactions. In: Endothelial cell biology in health and disease. N. Simionescu and M. Simionescu, eds. Plenum Press, New York, pp. 167–186.

    Google Scholar 

  • Madri, J.A., Bell, L., Marx, M., Merwin, J.R., Basson, C., and Prinz, C. (1991) Effects of soluble factors and extracellular matrix components on vascular cell behavior in vitro and in vivo: models of de-endothelialization and repair. J. Cell. Biochem., 45: 123–130.

    Article  PubMed  CAS  Google Scholar 

  • Madri, J.A. and Pratt, B.M. (1986) Endothelial cell-matrix interactions: In vitro models of angiogenesis. J. Histochem. Cytochem., 34 (1): 85–91.

    Article  PubMed  CAS  Google Scholar 

  • Maragoudakis, M.E., Panoutsacopoulou, M., and Sarmonika, M. (1988a) Rate of basement membrane biosynthesis as an index to angiogenesis. Tissue and Cell, 20: 531–539.

    Article  PubMed  CAS  Google Scholar 

  • Maragoudakis, M.E., Sarmonika, M., and Panoutsacopoulou, M. (1988b) Inhibition of basement membrane biosynthesis prevents angiogenesis. J. Pharmacol. Exp. Ther., 244: 729–733.

    PubMed  CAS  Google Scholar 

  • McDonald, J.A., Kelley, D.G., and Broekelmann, T.J. (1982) Role of fibronectin in collagen deposition: Fab’ to the gelatin-binding domain of fibronectin inhibits both fibronectin and collagen organization in fibroblast extracellular matrix. J Cell Biol., 92: 485–492.

    Article  PubMed  CAS  Google Scholar 

  • Missirlis, E., Karakiulakis, G., and Maragoudakis, M.E. (1990) Angiogenesis is associated with collagenous protein synthesis and degradation in the chick chorioallantoic membrane. Tissue and Cell, 22(4): 419–426.

    Google Scholar 

  • Mizrachi, Y., Lelkes, P.I., Ornberg, R.L., Goping, G., and Pollard, H.B. (1989) Specific adhesion between pheochromocytoma (PC12) cells and adrenal medullary endothelial cells in co-culture. Cell Tissue Res., 256: 365–372.

    Article  PubMed  CAS  Google Scholar 

  • Murphy, M.E. and Carlson, E.C. (1978) An ultrastructural study of developing extracellular matrix in vitelline blood vessels of the early chick embryo. Am. J. Anat., 151: 345–376.

    Article  PubMed  CAS  Google Scholar 

  • Nicosia, R.F., Belser, P., Bonanno, E., and Diven, J. (1991) Regulation of angiogenesis in vitro by collagen metabolism. In Vitro Cell. Dev. Biol., 27A: 961–966.

    Google Scholar 

  • Papadimitriou, E., Unsworth, B.R., Maragoudakis, M.E., and Lelkes, P.I. (1993) Time-course and quantification of extracellular matrix maturation in the chick chorioallantoic membrane and in cultured endothelial cells. Endothelium, 1: 207–219.

    Article  Google Scholar 

  • Papadimitriou, E. and Lelkes, P.I. (1993) Measurement of cell numbers in microtiter culture plates using the fluorescent dye Hoechst 33258. J. Immunol. Method., 162: 41–45.

    Article  CAS  Google Scholar 

  • Pesciotta Peters, D.M., Portz, L.M., Fullenwider, J., and Mosher, D.F. (1990) Co-assembly of plasma and cellular fibronectins into fibrils in human fibroblast cultures. J. Cell Biol., 111: 249–256.

    Article  Google Scholar 

  • Reed, J.A., Manahan, L.J., Chang-Soo, P., and Brigati, D.J. (1992) Complete one-hour immunocytochemistry based on capillary action. BioTechniques, 13: 434–443.

    CAS  Google Scholar 

  • Risau, W. and Lemmon, V. (1988) Changes in the vascular extracellular matrix during embryonic vasculogenesis and angiogenesis. Dev. Biol., 125: 441–450.

    Article  PubMed  CAS  Google Scholar 

  • Schor, A.M., Schor, S.L., and Allen, T.D. (1983) Effects of culture conditions on the proliferation, morphology and migration of bovine aortic endothelial cells. J. Cell Sci., 62: 267–285.

    PubMed  CAS  Google Scholar 

  • Schor, A.M. and Schor, S.L. (1983) Tumor angiogenesis. J. Path., 141:385–413.(Abstract) Stockley, A.T. (1980) The chorioallantoic membrane of the embryonic chick as an assay for angiogenic factors. Br. J. Dermatol., 102: 738–742. (Abstract)

    Google Scholar 

  • Yamada, K.M. and Olden, K. (1978) Fibronectins-adhesive glycoproteins of cell surface and blood. Nature, 275: 179–184.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Papadimitriou, E., Unsworth, B.R., Maragoudakis, M.E., Lelkes, P.I. (1994). Quantitative Analysis of Extracellular Matrix Formation in Vivo and in Vitro . In: Maragoudakis, M.E., Gullino, P.M., Lelkes, P.I. (eds) Angiogenesis. NATO ASI Series, vol 263. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9188-4_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9188-4_33

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9190-7

  • Online ISBN: 978-1-4757-9188-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics