Skip to main content

Optically Transparent Systems

  • Chapter

Part of the book series: Applications of Communications Theory ((ACTH))

Abstract

This chapter covers systems that use optically transparent devices for space-division switching, time-division switching, and spectral-division switching. Some systems that we will discuss, especially those classified as using spectral-division switching, may contain both optically transparent and optical logic components, but the optical logic components are usually at the edge of the network and the information is distributed principally through optically transparent devices. Since optical logic devices are not covered until Chapter 4, some devices are introduced in a rudimentary way when their characteristics are important to the system under consideration. More rigorous device descriptions can be found in Chapters 2 and 4.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. E. Benes, Mathematical Theory of Connecting Networks and Telephone Traffic, Academic Press, New York (1965).

    MATH  Google Scholar 

  2. J. Y. Hui, Switching and Traffic Theory for Integrated Broadband Networks, Kluwer Academic, Boston (1990).

    Book  MATH  Google Scholar 

  3. H. J. Seigel, Interconnection Networks for Large-Scale Parallel Processing, Heath, Boston (1985).

    Google Scholar 

  4. W.-K. Chen, Theory of Nets: Flows in Networks, Wiley, New York (1990).

    MATH  Google Scholar 

  5. T.-Y. Feng, A survey of interconnection networks, Computer Dec., 12–27 (1981).

    Google Scholar 

  6. J. H. Patel, Performance of processor-memory interconnections for multiprocessors, IEEE Trans. Comput. C-30, 771–780 (1981).

    Article  Google Scholar 

  7. L. R. Goke and G. J. Lipovski, Banyan networks for partitioning multiprocessor systems, Proceedings of the First Annual Symposium on Computer Architecture, 1973, pp. 21–28.

    Google Scholar 

  8. C.-L. Wu and T.-Y. Feng, On a class of multistage interconnection networks, IEEE Trans. Comput. C-29, 694–702 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  9. D. Slepian, Two theorems on a particular crossbar switching network, unpublished manuscript (1952).

    Google Scholar 

  10. A. M. Duguid, Structural properties of switching networks, Brown Univ. Prog. Rep. BTL-7 (1959).

    Google Scholar 

  11. P. Hall, On representatives of subsets, J. London Math. Soc. 10, 26–30 (1935).

    Article  Google Scholar 

  12. L. Mirsky, Transversal Theory, Academic Press, New York (1971).

    MATH  Google Scholar 

  13. D. C. Opferman and N. T. Tsao-Wu, On a class of rearrangeable switching networks—Part I: Control algorithms, Part II: Enumeration studies of fault diagnosis, Bell Syst. Tech. J. 50, 1579–1618 (1971).

    MathSciNet  MATH  Google Scholar 

  14. M. C. Pauli, Reswitching of connection networks, Bell Syst. Tech. J. 41, 833–855 (1962).

    Google Scholar 

  15. A. Varma and C. S. Raghavendra, Rearrangeability of multistage shuffle/exchange networks, IEEE Trans. Commun. COM-36, 1138–1147 (1988).

    Article  MATH  Google Scholar 

  16. D. G. Smith and M. M. Rahmnekhan, Wide-sense non-blocking networks, and some packing algorithms, Proc. 1976 Int. Teletraffic Conf, pp. 542–1–542–4.

    Google Scholar 

  17. V. E. Benes and R. P. Kurshan, Wide-sense non-blocking network made of square switches, Electron. Lett. 17, 697 (1981).

    Article  Google Scholar 

  18. R. A. Spanke, Architectures for large nonblocking optical space switches, IEEE J. Quantum Electron. QE-22, 964–967 (1986).

    Article  Google Scholar 

  19. C. Clos, A study of non-blocking switching networks, Bell Syst. Tech. J. 32, 406–424 (1953).

    Google Scholar 

  20. A. Huang and S. Knauer, Starlite: A wideband digital switch, Proc. Globecom ’84.

    Google Scholar 

  21. Y.-S. Yeh, M. G. Hluchyj, and A. S. Acampora, The knockout switch: A simple, modular architecture for high-performance packet switching, IEEE J. Sel. Areas Commun. SAC-5, 1274 1283 (1987).

    Article  Google Scholar 

  22. A. R. Diaz, R. F. Kaiman, J. W. Goodman, and A. A. Sawchuck, Fiber-optic crossbar switch with broadcast capability, Opt. Eng. 27, 1087–1095 (1988).

    Google Scholar 

  23. J. D. Evankow and R. A. Thompson, Photonic switching modules designed with laser diode amplifiers, IEEE J. Sel. Areas Commun. SAC-6, 1087–1095 (1988).

    Article  Google Scholar 

  24. H. S. Hinton, A nonblocking optical interconnection network using directional couplers, Proceedings of 1984 IEEE GLOBECOM, 2, pp. 885–889.

    Google Scholar 

  25. M. Kondo, N. Takado, K. Komatsu, and Y. Ohta, 32 switch-elements integrated low-crosstalk Ti:LiNbO3 optical matrix switch, IOOC-ECOC, 1985, pp. 361–364.

    Google Scholar 

  26. G. A. Bogert, Ti:LiNbO3 intersecting waveguides, Electron. Lett. 23, 817–818 (1987).

    Article  Google Scholar 

  27. R. A. Spanke, Architectures for guided-wave optical space switching systems, IEEE Commun. 25, 42–48 (1987).

    Article  Google Scholar 

  28. A. Waksman, A permutation network, J. Assoc. Comput. Mach., 15, 159–163 (1968).

    Article  MathSciNet  MATH  Google Scholar 

  29. K. Padmanabhan and A. N. Netravali, Dilated networks for photonic switching, IEEE Trans. Commun. COM-35, 1357 1365 (1987).

    Article  Google Scholar 

  30. M. Fujiwara, H. Nishimoto, T. Kajitani, M. Itoh, and S. Suzuki, Studies on semiconductor optical amplifiers for line capacity expansion in photonic space-division switching system, IEEE J. Lightwave Technol. LT-9, 155–160 (1991).

    Article  Google Scholar 

  31. Introduction to digital transmission, in: Transmission Systems for Communications, 5th ed., Bell Telephone Laboratories, pp. 589 606 (1982).

    Google Scholar 

  32. Digital HierarchyOptical Interface Rates and Formats Specifications, ANSI T1. 105–1988.

    Google Scholar 

  33. K. Oshima, T. Kitayama, M. Yamaki, T. Matsui, and K. Ito, Fiber-optic local area passive network using burst TDMA scheme, IEEE-J. Lightwave Technol. LT-3, 502–510 (1985).

    Article  Google Scholar 

  34. J. R. Erickson, R. A. Nordin, W. A. Payne, and M. T. Ratajack, A 1.7 gigabit-per-second, time-multiplexed photonic switching experiment, IEEE Commun. 25, pp. 56 58 (1987).

    Article  Google Scholar 

  35. T. K. Gustafson and P. W. Smith (eds.), Photonic Switching, Springer-Verlag, Berlin (1987). See T. Yasui and K. Kikuchi, Photonic switching system/network architectural possibilities, pp. 158–166.

    Google Scholar 

  36. R. S. Tucker, S. K. Korotky, G. Eisenstein, L. L. Buhl, J. J. Veselka, G. Raybon, B. L. Kasper, A. H. Gnauck, and R. C. Alferness, 16-Gbit/s optical time-division-multiplexed transmission system experiment, OFC ‘88 Technical Digest, Vol. 1 THB2, OSA, p. 149.

    Google Scholar 

  37. S. Suzuki, T. Terakado, K. Komatsu, K. Nagashima, A. Suzuki, and M. Kondo, An experiment on high-speed optical time-division switching, IEEE J. Lightwave Technol. LT-4, 894 899 (1986).

    Article  Google Scholar 

  38. R. A. Thompson and P. P. Giordano, An experimental photonic time-slot interchanger using optical fibers as reentrant delay-line memories, IEEE J. Lightwave Technol. LT-5, 154 162(1987).

    Article  Google Scholar 

  39. T. K. Gustafson and P. W. Smith (eds.), Photonic Switching, Springer-Verlag, Berlin (1987). See W. A. Payne and H. S. Hinton, System considerations for the lithium niobate photonic switching technology, pp. 196 199.

    Google Scholar 

  40. L. G. Cohen and J. W. Fleming, Effect of temperature on transmission in lightguides, Bell Syst. Tech. J. 58, 945–951 (1979).

    Google Scholar 

  41. R.I. MacDonald, Switched optical delay-line signal processors, IEEE J. Lightwave Technol. LT-5, 856–861 (1987).

    Article  Google Scholar 

  42. T. K. Gustafson and P. W. Smith (eds.), Photonic Switching, Springer-Verlag, Berlin (1987). See R. A. Thompson, Optimizing photonic variable-integer-delay circuits, pp. 158–166.

    Google Scholar 

  43. P. R. Prucnal, M. A. Santoro, and T. R. Fan, Spread spectrum fiber-optic local area network using optical processing, IEEE J. Lightwave Technol. LT-4, 547–554 (1986).

    Article  Google Scholar 

  44. P. R. Prucnal, M. A. Santoro, and S. K. Sehgal, Ultrafast all-optical synchronous multiple access fiber networks, IEEE J. Sel. Areas Commun. SAC-4, 1484–1493 (1986).

    Article  Google Scholar 

  45. G. J. Foschini and G. Vannucci, Using spread-spectrum in a high-capacity fiber-optic local network, IEEE J. Lightwave Technol. LT-6, 370–379 (1988).

    Article  Google Scholar 

  46. A. A. M. Saleh and H. Kogelnik, Reflective single-mode fiber-optic passive star couplers, IEEE J. Lightwave Technol. LT-6, 392–398 (1988).

    Article  Google Scholar 

  47. T. E. Darcie, Subcarrier multiplexing for multiple-access lightwave networks, IEEE J. Lightwave Technol. LT-5, 1103–1110 (1987).

    Article  Google Scholar 

  48. J. Lipson, L. C. Upadhyayula, S.-Y. Huang, C. B. Roxlo, E. J. Flynn, P. M. Nitzsche, C. J. McGrath, G. L. Fenderson, and M. S. Schaefer, High-fidelity lightwave transmission of multiple AM-VSB NTSC signals, IEEE Trans. Microwave Theory Tech. MTT-38, 483–493 (1990).

    Article  Google Scholar 

  49. T. E. Darcie and G. E. Bodeep, Lightwave subcarrier CATV transmission systems, IEEE Trans. Microwave Theory Tech. MTT-38, 524–533 (1990).

    Article  Google Scholar 

  50. P. M. Hill and R. Olshansky, A 20-channel optical communication system using subcarrier multiplexing for the transmission of digital video signals, IEEE J. Lightwave Technol. LT-8, 554–560 (1990).

    Article  Google Scholar 

  51. R. Olshansky and V. A. Lanziera, 60-channel FM video subcarrier multiplexed optical communication system, Electron. Lett. 23, 1196–1197 (1987).

    Article  Google Scholar 

  52. J. E. Bowers, Optical transmission using PSK-modulated subcarriers at frequencies to 16 GHz, Electron. Lett. 22, 1119–1121 (1986).

    Article  Google Scholar 

  53. G. E. Bodeep and T. E. Darcie, Semiconductor lasers versus external modulators: A comparison of nonlinear distortion for lightwave subcarrier CATV applications, IEEE Photonics Technol. Lett. PTL-1, 401–403 (1989).

    Article  Google Scholar 

  54. P. S. Henry, R. A. Linke, and A. H. Gnauck, Introduction to lightwave systems, in: Optical Fiber Telecommunications II (S. E. Miller and I. P. Kaminow, eds.), pp. 822–825, Academic Press, New York (1988).

    Google Scholar 

  55. C. A. Brackett, Dense wavelength division multiplexing networks: Principles and applications, IEEE J. Sel. Areas Commun. SAC-8, 948–964 (1990).

    Article  Google Scholar 

  56. J. T. Verdeyen, Laser Electronics, Prentice-Hall, Englewood Cliffs, N.J. (1981).

    Google Scholar 

  57. J. E. Bowers and M. A. Pollack, Semiconductor lasers for telecommunications, in: Optical Fiber Telecommunications II (S. E. Miller and I. P. Kaminow, eds.), pp. 509–568, Academic Press, New York (1988).

    Google Scholar 

  58. H. Kobrinski, M. P. Vecchi, M. S. Goodman, E. L. Goldstein, T. E. Chapuran, J. M. Cooper, M. Tur, C.-E. Zah, and S. G. Menocal, Jr., Fast wavelength-switching of laser transmitters and amplifiers, IEEE J. Sel. Areas Commun. SAC-8, 1190–1202 (1990).

    Article  Google Scholar 

  59. M. S. Goodman, H. Kobrinski, M. P. Vecchi, R. M. Bulley, and J. L. Gimlett, The LAMBDANET multiwavelength network: Architecture, applications, and demonstrations, IEEE J. Sel. Areas Commun. SAC-8, 995–1004 (1990).

    Article  Google Scholar 

  60. TSL1000 Tunable External Cavity Semiconductor Laser, BT&D Technologies, USE-0052–03-17–89, Wilmington, Del.

    Google Scholar 

  61. F. Heismann, R. C. Alferness, L. L. Buhl, G. Eisenstein, S. K. Korotky, J. J. Veselka, L. W. Stulz, and C. A. Burrus, Narrow-linewidth, electro-optically tunable InGaAsP-Ti:LiNbO3 extended cavity laser, Appl. Phys. Lett. 51, 164–166 (1987).

    Article  Google Scholar 

  62. G. Coquin, K. W. Cheung, and M. M. Choy, Single- and multiple-wavelength operation of acousto-optically tuned lasers at 1.3 µm, IEEE J. Quantum Electron. QE-25, 1575–1579 (1989).

    Article  Google Scholar 

  63. M. Fujiwara, N. Shimosaka, M. Nishio, S. Suzuki, S. Yamazaki, S. Murata, and K. Kaede, A coherent photonic wavelength-division switching system for broad-band networks, IEEE J. Lightwave Technol. LT-8, 416–422 (1990).

    Article  Google Scholar 

  64. L. G. Kazovsky, M. Stern, S. G. Menocal, and C.-E. Zah, DBR active optical filters: Transfer function and noise characteristics, IEEE J. Lightwave Technol. LT-8, 1441–1451 (1990).

    Article  Google Scholar 

  65. T. Numai, 1.5 µm optical filter using a two-section Fabry Perot laser diode with wide tuning range and high constant gain, IEEE Photonics Technol. Lett. PTL-2, 401–403 (1990).

    Article  Google Scholar 

  66. I. P. Kaminow, P. P. Iannone, J. Stone, and L. W. Stulz, FDMA-FSK star network with a tunable optical filter demultiplexer, IEEE J. Lightwave Technol. LT-6, 1406–1414 (1988);

    Article  Google Scholar 

  67. I. P. Kaminow, FSK with direct detection in optical multiple-access FDM networks, IEEE J. Sci. Areas Commun. SAC-8, 1005–1014 (1990).

    Article  Google Scholar 

  68. A. Frenkel and C. Lin, Angle-tuned etalon filters for optical channel selection in high density wavelength-division multiplexed systems, IEEE J. Lightwave Technol. LT-7, 615–624 (1989).

    Article  Google Scholar 

  69. M. W. Maeda, J. S. Patel, C. Lin, J. Horrobin, and R. Spicer, Electronically tunable liquid-crystal-etalon filter for high-density WDM systems, IEEE Photonics Technol. Lett. PTL-2, 820–822 (1990).

    Article  Google Scholar 

  70. F. Heisman, W. Warzanskyj, R. C. Alferness, and L. L. Buhl, Narrowband double-pass wavelength filter with broad tuning range, Integrated and Guided-Wave Optics, 1988, Technical Digest Series, Vol. 5, pp. 103–106, Optical Society of America, Washington, D.C.

    Google Scholar 

  71. K.-W. Cheung, Acoustooptic tunable filters in narrowband WDM networks: Systems issues and network applications, IEEE J. Sel. Areas Commun. SAC-8, 1015–1025 (1990).

    Article  Google Scholar 

  72. OFC1100 Tunable Optical Filter, BT&D Technologies, USE-0048–03-17–89, Wilmington, Del.

    Google Scholar 

  73. N. A. Olsson and W. T. Tsang, An optical switching and routing system using frequency tunable cleaved-coupled-cavity semiconductor lasers, IEEE J. Quantum Electron. QE-20, 332–334(1984).

    Article  Google Scholar 

  74. D. B. Payne and J. R. Stern, Transparent single mode fiber optical networks, IEEE J. Lightwave Technol. LT-4, 864–869 (1986).

    Article  Google Scholar 

  75. E.-J. Bachus, R.-P. Braun, C. Caspar, E. Grossman, H. Foisel, K. Hermes, H. Lamping, B. Strebel, and F. J. Westphal, Ten-channel coherent optical fiber transmission, Electron. Lett. 22, 1002–1003 (1986).

    Article  Google Scholar 

  76. E. Arthurs, J. M. Cooper, M. S. Goodman, H. Kobrinski, M. Tur, and M. P. Vecchi, Multiwavelength optical crossconnect for parallel-processing computers, Electron. Lett. 24, 119–120 (1986).

    Article  Google Scholar 

  77. B. S. Glance, K. Pollock, C. A. Burrus, B. L. Kasper, G. Eisenstein, and L. W. Stulz, WDM coherent optical star network, IEEE J. Lightwave Technol. LT-6, 67–72 (1988).

    Article  Google Scholar 

  78. B. S. Glance and O. Scarmucci, High-Performance Dense FDM Coherent Optical Network, IEEE J. Select. Areas Commun., Vol. 8, No. 6, Aug. 1990, pp. 1043–1047.

    Article  Google Scholar 

  79. C. Lin, H. Kobrinski, A. Frenkel, and C. A. Brackett, Wavelength-tunable 16 optical channel transmission experiment at 2 Gb/s and 600 Mb/s for broadband subscriber distribution, Electron. Lett. 24, 1215–1217 (1988).

    Article  Google Scholar 

  80. A. R. Chraplyvy and R. W. Tkach, Narrowband tunable optical filter for channel selection in densely packed WDM systems, Electron. Lett. 22, 1084–1085 (1986).

    Article  Google Scholar 

  81. H. Toba, K. Oda, K. Nakanishi, N. Shibata, K. Nosu, N. Takato, and M. Fukuda, A 100-channel optical FDM transmission/distribution at 622 Mb/s over 50 km, IEEE J. Lightwave Technol. LT-8, 1396–1401 (1990).

    Article  Google Scholar 

  82. E. Arthurs, M. S. Goodman, H. Kobrinski, and M. P. Vecchi, Hypass: An optoelectronic hybrid packet switching system, IEEE Sel. Areas Commun. SAC-6, 1500 1510 (1988).

    Article  Google Scholar 

  83. J. Stone and L. W. Stulz, Pigtailed high-finesse tunable fiber Fabry-Perot interferometers with large, medium, and small free spectral ranges, Electron. Lett. 23, 781 (1987).

    Article  Google Scholar 

  84. J. I. Capetanakis, Generalized TDMA: The multi-access tree protocol, IEEE Trans. Commun. COM-27, 1476–1484 (1979).

    Article  Google Scholar 

  85. A. S. Acampora, M. J. Karol, and M. G. Hluchyj, Terabit lightwave networks: The multihop approach, AT&T Tech. J. 66(6), 21–34 (1987).

    Google Scholar 

  86. S. Suzuki, M. Nishio, T. Numai, M. Fujiwara, M. Itoh, S. Murata, and N. Shimosaka, A photonic wavelength-division switching system using tunable laser diode filters, IEEE J. Lightwave Technol. LT-8, 660–666 (1990).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hinton, H.S., Erickson, J.R., Cloonan, T.J., Tooley, F.A.P., McCormick, F.B., Lentine, A.L. (1993). Optically Transparent Systems. In: An Introduction to Photonic Switching Fabrics. Applications of Communications Theory. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9171-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9171-6_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9173-0

  • Online ISBN: 978-1-4757-9171-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics