Skip to main content

Theoretical Modeling of Ammonoid Morphology

  • Chapter
Ammonoid Paleobiology

Part of the book series: Topics in Geobiology ((TGBI,volume 13))

Abstract

Theoretical morphology, which was first developed by Raup and Michelson (1965). is a means of describing the morphological spectra of extant and fossil organisms using a mathematical growth model. Raup (1966, 1967) simulated the three-dimensional morphology and growth pattern of marginally growing molluscan shells by several simple parameters and reproduced these shell shapes with the aid of computer graphics. His approach can be applied not only to interpret the functional and adaptive constraints of morphology but also to analyze morphogenesis. With the recent development of the computer and its graphic techniques, the theoretical morphological approach becomes useful for understanding the morphology of extant and extinct animals including ammonoids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackerly, S. C., 1987, Using “local” coordinates to analyze shell form in molluscs (abstract), Geol. Soc. Am. Abstr. Progs. 19: 566.

    Google Scholar 

  • Ackerly, S. C., 1989, Kinematics of accretionary shell growth, with examples from brachiopods and molluscs, Paleobiology 15: 147–164.

    Google Scholar 

  • Bayer, U., 1978, Morphologic programs, instabilities, and evolution: A theoretical study, N. lb. Geol. Paläont. Abh. 156: 226–261.

    Google Scholar 

  • Burnaby, T. P., 1966, Allometric growth of ammonoid shells: A generalization of the logarithmic spiral, Nature 209: 904–906.

    Article  Google Scholar 

  • Chamberlain, J. A., Jr., 1976, Flow patterns and drag coefficients of cephalopod shells, Palaeontology (Lond.) 19: 539–563.

    Google Scholar 

  • Chamberlain, J. A., Jr., 1981, Hydromechanical design of fossil cephalopods, in: The Ammonoidea, Systematics Association Special Volume 18 ( M. R. House and J. R. Senior, eds.), Academic Press, London, pp. 289–336.

    Google Scholar 

  • Chamberlain, J. A., Jr., and Westermann, G. E. G., 1976, Hydrodynamic properties of cephalopod shells, Paleobiology 2: 316–331.

    Google Scholar 

  • Checa, A., 1991, Sectorial expansion and shell morphogenesis in molluscs, Lethaia 24: 97–114.

    Article  Google Scholar 

  • Denton, E. F., and Gilpin-Brown, J. B., 1966, On the buoyancy of the pearly Nautilus, J. Mar. Biol. Assoc. U.K. 46: 723–759.

    Article  Google Scholar 

  • Diener, C., 1912, Lebensweise and Verbreitung der Ammoniten, N. Jb. Mineral. Geol. Paläontol. 2: 67–89.

    Google Scholar 

  • Ebel, K., 1983, Berechnungen zur Schwebefähigkeit von Ammoniten, N. Jb. Geol. Paläontol. Mon a tsh. 1983: 614–640.

    Google Scholar 

  • Ebel, K., 1985, Gehäusespirale and Septenform bei Ammoniten unter der Annahme vagil benthischer Lebensweise, Paläontol. Z. 59: 109–123.

    Google Scholar 

  • Ebel, K., 1990, Swimming abilities in ammonites and limitations, Paläontol. Z. 64: 25–37.

    Google Scholar 

  • Ebel, K., 1992, Mode of life and soft body shape of heteromorph ammonites, Lethaia 25: 179–193.

    Article  Google Scholar 

  • Heptonstall, W. B., 1970, Buoyancy control in ammonoids, Lethaia 3: 317–328.

    Article  Google Scholar 

  • Illert, C., 1987, Formulation and solution of the classical problem. I. Shell geometry, Nuovo Cimento 9: 791–813.

    Article  Google Scholar 

  • Illert, C., 1989, Formulation and solution of the classical problem. II. Tubular three-dimensional seashell surfaces, Nuovo Cimento 11: 761–780.

    Article  Google Scholar 

  • Jacobs, D. K., 1992, Shape. drag, and power in ammonoid swimming, Paleobiology 18: 203–220.

    Google Scholar 

  • Matsumoto, T., 1977, Some heteromorph ammonites from the Cretaceous of Hokkaido, Mem. Fac. Sci. Kyushu Univ. Ser. D, Geol. 23: 303–366.

    Google Scholar 

  • McGhee, G. R., 1978, Analysis of the shell torsion phenomenon in the Bivalvia, Lethaia 11: 315–329.

    Article  Google Scholar 

  • McGhee, G. R., 1980, Shell form in the biconvex articulate Brachiopoda: A geometric analysis, Paleobiology 6: 57–76.

    Google Scholar 

  • Merkt, J., 1966, Über Austern and Serperin als Epöken auf Ammonitengehäusen, N. Jb. Geol. Paldontol. Abh. 125: 467–479.

    Google Scholar 

  • Moore, R. C., Lalicker, O., and Fischer, A., 1952, Invertebrate Fossils. McGraw-Hill, New York.

    Google Scholar 

  • Moseley, H., 1838, On the geometrical forms of turbinated and discoid shells, Phil. Trans. R. Soc. Lond. 1838: 351–370.

    Google Scholar 

  • Okamoto, T., 1984, Theoretical morphology of Nipponites (a heteromorph ammonoid), Fossils (Kaseki), Palaeontol. Soc. Jpn. 36: 37–51

    Google Scholar 

  • Okamoto, T., 1986, Analysis of morphology in heteromorph ammonites, Abstr. Ann. Meet. Palaeontol. Soc. Jpn. 1986: 34

    Google Scholar 

  • Okamoto, T., 1988a, Analysis of heteromorph ammonoids by differential geometry, Palaeontology (Lond.) 31: 35–52.

    Google Scholar 

  • Okamoto, T., 1988b, Changes in life orientation during the ontogeny of some heteromorph ammonoids, Palaeontology (Lond.) 31: 281–294.

    Google Scholar 

  • Okamoto, T., 1988c, Developmental regulation and morphological saltation in the heteromorph ammonite Nipponites, Paleobiology 14: 272–286.

    Google Scholar 

  • Okamoto, T., 1989, Comparative morphology of Nipponites and Eubostrychoceras (Cretaceous nostoceratids), Trans. Proc. Palaeont. Soc. Jpn N.S. 265: 117–139.

    Google Scholar 

  • Raup, D. M., 1966, Geometric analysis of shell coiling: General problems, J. Paleontol. 40: 1178–1190.

    Google Scholar 

  • Raup, D. M., 1967, Geometric analysis of shell coiling: coiling in ammonoids, J. Paleontol. 41: 43–65.

    Google Scholar 

  • Raup, D. M., and Chamberlain, J. A., Jr., 1967, Equation for volume and center of gravity in ammonoid shells, J. Paleontol. 41: 566–574.

    Google Scholar 

  • Raup, D. M., and Michelson, A., 1965, Theoretical morphology of the coiled shell, Science 147: 1294–1295.

    Article  PubMed  CAS  Google Scholar 

  • Rex, M. A., and Boss. K. J., 1976, Open coiling in recent gastropods, Malacologia 15: 289–297.

    Google Scholar 

  • Reyment, R. A., 1958, Some factors in the distribution of fossil cephalopods. Stockholm Contrib. Geol. 1: 97–184.

    Google Scholar 

  • Saunders, W. B., and Shapiro, E. A., 1986, Calculation and simulation of ammonoid hydrostatics, Paleobiology 12: 64–79.

    Google Scholar 

  • Saunders, W. B., and Swan, A. R. H., 1984, Morphology and morphologic diversity of mid-Carboniferous (Namurian) ammonoids in time and space, Paleobiology 10: 195–228.

    Google Scholar 

  • Savazzi, E., 1985, SELLGEN a BASIC program for the modeling of molluscan shell ontogeny and morphogenesis, Comput. Geosci. 11: 521–530.

    Article  Google Scholar 

  • Savazzi. E., 1987. Geometric and functional constraints on bivalve shell morphology, Lethaia 23: 195–212.

    Article  Google Scholar 

  • Savazzi, E., 1990, Biological aspect of theoretical shell morphology, Lethaia 23: 195–212.

    Article  Google Scholar 

  • Swan, A. R. H., and Saunders, W. B., 1987, Function and shape in late Paleozoic (mid-Carboniferous) ammonoids, Paleobiology 13: 297–311.

    Google Scholar 

  • Tanabe, K., 1975, Functional morphology of Otoscaphites puerculus (Jimbo), an Upper Cretaceous ammonite, Trans. Proc. Palaeont. Soc. Jpn. N.S. 99: 109–132.

    Google Scholar 

  • Tanabe, K., 1977, Functional evolution of Otoscaphites puerculus (Jimbo) and Scaphites plan us (Yabe), Upper Cretaceous ammonites, Mem. Fac. Sci. Kyushu Univ. D. Geol. 23: 367–407.

    Google Scholar 

  • Tanabe, K., Obata, I., and Futakami, M., 1981, Early shell morphology in some Upper Cretaceous heteromorph ammonites, Trans. Proc. Palaeontol. Soc. Jpn. N.S. 124: 215–234.

    Google Scholar 

  • Tasch, P., 1973, Paleobiology of the Invertebrates, John Wiley and Sons, New York.

    Google Scholar 

  • Thompson, D. W., 1942, On Growth and Form, Cambridge University Press, Cambridge.

    Google Scholar 

  • Trueman, A. E., 1941, The ammonite body-chamber, with special reference to the buoyancy and mode of life of the living ammonite, Q. J. Geol. Soc. (Land.) 96: 339–383.

    Article  Google Scholar 

  • Ward, P. D., and Westermann, G. E. G., 1977, First occurrence, systematics, and the functional morphology of Nipponites (Cretaceous Lytoceratina) from the Americas, J. Paleontol. 51: 367–372.

    Google Scholar 

  • Yabe, H., 1904, Cretaceous Cephalopoda from the Hokkaido, Part 2, J. Coll. Sci. Imp. Univ. Tokyo 20: 1–45.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Okamoto, T. (1996). Theoretical Modeling of Ammonoid Morphology. In: Landman, N.H., Tanabe, K., Davis, R.A. (eds) Ammonoid Paleobiology. Topics in Geobiology, vol 13. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9153-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9153-2_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9155-6

  • Online ISBN: 978-1-4757-9153-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics