Skip to main content

Effect of JTP-2942, a Novel TRH Analogue, on Cognitive Function and Learning in Rodents

  • Chapter
Alzheimer’s and Parkinson’s Diseases

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 44))

  • 13 Accesses

Abstract

Thyrotropin-releasing hormone (TRH) is a hypothalamic hormone that releases thyrotropin and prolactin from the anterior pituitary, and is widely distributed throughout the central nervous system (CNS).1–5 It has been shown to have various central actions, such as promoting locomotor activity, increasing body temperature in animals, attenuating pentobarbital induced sleep, and promoting recovery from traumatic loss of consciousness in mice.6–10 TRH also increases cholinergic neuronal activity11–14 and improves memory in amnesia models.15 Currently TRH and its analogues are under clinical investigation for treating spinal cord injury, traumatic brain injury, and dementia including Alzheimer’s disease.16–18 However, TRH has some disadvantages for therapeutic use, including a short duration of action and unsuitability for oral administration. Accordingly, we synthesized a novel TRH analogue, Nα-WS, 2R)-2-methyl-4-oxocyclopentanecarbonyl]-L-histidyl-L-prolineamide monohydrate (JTP2942), with a longer duration of action on the CNS and fewer hormonal effects than TRH.19–21 JTP-2942 has been shown to markedly increase CNS cholinergic neuronal activity22 and improve memory in amnesia models and aged animals.23,24 The callosal-neocortical system is implicated in interhemispheric transfer of the engram and the lateralization of information.25–27 The present study investigated whether JTP-2942 could improve cognitive function and learning in rats subjected to a passive avoidance test after transection of the corpus callosum, and investigated the mechanism of action of this drug using the transcallosal response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Boler, F.M. Enzmann, K. Folkers, C. Bowers, and A.V. Schalley, The identity of chemical and hormonal properties of thyrotropin-releasing hormone and pyroglutamyl-histidyl-prolineamide, Biochem. Biophys. Res. Commun. 37: 705 (1969).

    Article  PubMed  CAS  Google Scholar 

  2. M.J. Brownstein, M. Palkovits, J.M. Saavedra, R.M. Bassin, and R.D. Utiger, Thyrotropin-releasing hormone in specific nuclei of rat brain, Science 185: 267 (1974).

    Article  PubMed  CAS  Google Scholar 

  3. J.E. Morley, Extrahypothalamic thyrotropin releasing hormone (TRH) - its distribution and its functions, Life Sci. 25: 1539 (1979).

    Article  PubMed  CAS  Google Scholar 

  4. P.C. Emson, G.W. Bennet, and M.N. Rossor, The distribution and characterization of thyrotropin releasing hormone (TRH) in the human brain, Neuropeptides 2: 115 (1981).

    Article  CAS  Google Scholar 

  5. C.R. Parker Jr., and J.C. Porter, Regional localization and subcellular compartmentalization of thyrotropin releasing hormone in adult human brain, J. Neurochem. 41: 1614 (1983).

    Article  PubMed  CAS  Google Scholar 

  6. G.G. Yarbrough, On the neuropharmacology of thyrotropin releasing hormone (TRH), Progr. Neurobiol. 12: 291 (1979).

    Article  CAS  Google Scholar 

  7. M. Yamamoto, and M. Shimizu, Effect of a new TRH analogue, YM-14673 on the central nervous system, Naunyn-Schmiedeberg’s Arch. Pharmacol. 336: 561 (1987).

    PubMed  CAS  Google Scholar 

  8. G.R. Breese, J.M. Cott, B.R.Cooper, A. J. Prange, M.A. Jr. Lipton, and N.P. Plotnikoff, Effect of thyrotropin releasing hormone (TRH) on the action of pentobarbital and other centrally acting drugs, J. Pharmacol. Exp. Ther. 193: 11 (1975).

    CAS  Google Scholar 

  9. D.E. Schmidt, Effect of thyrotropin releasing hormone (TRH) on pentobarbital-induced decrease in cholinergie neuronal activity, Comm. Pychopharmacol. 1: 469 (1977).

    CAS  Google Scholar 

  10. M. Yamamura, K. Kinoshita, H. Nakagawa, and R. Ishida, Pharmacological study of TA-0910, a new thyrotropin-releasing hormone (TRH) analogue (II); Inhibition of pentobarbital anesthesia, Jpn. J. Pharmacol. 55: 69 (1991).

    Article  PubMed  CAS  Google Scholar 

  11. S. Narumi, Y. Nagai, M. Miyamoto, and Y. Nagawa, Thyrotropin-releasing hormone (TRH) and its analogue (DN-1417): interaction with pentobarbital in choline uptake and acetylcholine synthesis of rat brain slice, Life Sci. 32: 1637 (1983).

    Article  PubMed  CAS  Google Scholar 

  12. M.G. Giovannini, F Casamenti, A. Nistri, F. Paoli, and G. Pepeu, Effect of thyrotropin releasing hormone (TRH) on acetylcholine release from different brain areas investigated by microdialysis, Br. J. Pharmacol. 102: 363 (1991).

    Article  PubMed  CAS  Google Scholar 

  13. M. Okada, Effect of a new thyrotropin releasing hormone analogue, YM-14673, on the in vivo release of acetylcholine as measured by intracerebral dialysis in rats, J. Neurochem. 56: 1544 (1991).

    Article  PubMed  CAS  Google Scholar 

  14. N. Brunello, and D.L. Cheney, The septal-hippocampal cholinergie pathway: role in antagonism of pentobarbital anesthesia and regulation by various afferents, J. Pharmacol. Exp. Mer. 219: 489 (1981).

    CAS  Google Scholar 

  15. M. Yamamoto, and M. Shimizu, Effect of a new TRH analogue, YM-14673 on a passive avoidance test as a possible criterion of improvement in cognitive disturbance in rodents, Naunyn-Schmiedeberg’s Arch. Pharmacol. 338: 262 (1988).

    PubMed  CAS  Google Scholar 

  16. E.C. Griffith, Thyrotropin-releasing hormone. New applications in the clinic, Nature 322: 212 (1986).

    Article  Google Scholar 

  17. E.C. Griffith, Clinical applications of thyrotropin-releasing hormone, Clin. Sci. 73: 449 (1987).

    Google Scholar 

  18. A.I. Farden, and S. Saizman, Pharmacological strategies in CNS trauma, Trends Pharmacol. Sci. 13: 29 (1992).

    Article  Google Scholar 

  19. J. Haruta, K. Sakuma, A. Yasuda, K. Hara, A. Saito, F. Yonemori, M. Matsushita, A. Uemura, K. Iwata, and I. Uchida, The synthesis and pharmacological activities of TRH analogues, Med. Chem Soc. (Abst) 12th Symposium: 52 (1991).

    Google Scholar 

  20. M. Matsushita, F. Yonemori, N. Furukawa, A. Ohta, I. Uchida, and K. Iwata, Effect of the novel thyrotropin-releasing hormone analogue Na-((ls,2R)-2-Methyl-4-oxocyclopentylcarbonyl)-L-histidylL-prolinamide Monohydrate on the central nervous system in mice and rats, Arzneimittel Forsch. Drug Res. 43: 813 (1993).

    CAS  Google Scholar 

  21. M. Matsushita, F. Yonemori, A. Hamada, M. Nakae, T. Suzuki, A. Ohta, K. Toide, and K. Iwata, Effect and mechanism of action of a novel TRH analogue, JTP-2942, on recovery from pentobarbital-induced anesthesia in rats, Jpn. J. Pharmacol. 61(Sup.: 113 (1993).

    Google Scholar 

  22. K. Toide, M. Shinoda, M. Takase, K. Iwata, and H. Yoshida, Effects of a novel thyrotropin-releasing hormone analogue, JTP-2942, on extracellular acetylcholine and choline levels in the rat frontal cortex and hippocampus, Eur. J. Pharmacol. 233: 21 (1993).

    Article  PubMed  CAS  Google Scholar 

  23. A. Uemura, F. Yonemori, N. Furukawa, K. Toide, and K. Iwata, Effect of novel TRH analogue, JTP2942, on various amnesia models in rodents, Jpn. J. Pharmacol. 61 (Sup.): 187 (1993).

    Google Scholar 

  24. H. Yamada, S. Takeuchi, K. Toide, and K. Iwata, Effect and mechanism of action of a novel TRH analogue, JTP-2942, on Morris water maze spatial cognitive impairment in aged rats, Jpn. J. Pharmacol. 61 (Sup.): 92 (1993).

    Google Scholar 

  25. L.T. Rutledge, and T.T. Kennedy, Brain-stem and cortical interactions in the interhemispheric delayed response, Exp. Neurol. 4: 470 (1961).

    Article  PubMed  CAS  Google Scholar 

  26. F. Bremer, Le corpus calloeux dans la dynamique cerebrale, Experientia 22: 201 (1966).

    Article  PubMed  CAS  Google Scholar 

  27. G.O. Ivy, and H.P. Killackey, The ontogeny of the distribution of callosal projection neurons in the rat parietal cortex, J. Comp. Neurol. 195: 367 (1981).

    Article  PubMed  CAS  Google Scholar 

  28. G. Paxion, and C. Watson, “The rat brain in stereotaxic coordinates”, Academic Press, New York.

    Google Scholar 

  29. M.E. Jarvik, and A. Kopp, An improved one-trial passive avoidance, learning situation, Psychol. Rep. 27: 221 (1967).

    Article  Google Scholar 

  30. J. Seggie, and M. Berry, Ontogeny of interhemispheric evoked potentials in the rat: significance of myelination of the corpus callosum, Exp. Neurol. 35: 215 (1972).

    Article  PubMed  CAS  Google Scholar 

  31. D.A. Wilson, and R.J. Racine, The postnatal development of post-activation potentiation in the rat neocortex, Develop. Brain Res. 7: 271 (1983).

    Article  Google Scholar 

  32. D.A. Wilson, A comparison of the postnatal development of post-activation potentiation in the neocortex and dentate gyros of the rat, Develop. Brain Res. 16: 61 (1984).

    Article  Google Scholar 

  33. V.L. Bianki, and V.A. Shramm, New evidence on the callosal system, Int. J. Neurosci. 25: 175 (1985).

    Article  PubMed  CAS  Google Scholar 

  34. S.Okuyama, and H. Aihara, Action of nootropic drugs on transcallosal responses in rats, Neuropharmacology 27: 67 (1988).

    Article  PubMed  CAS  Google Scholar 

  35. S.Okuyama, and H. Aihara, Effect of minaprine on synaptic transmission in the neocortex of the rat in vivo, Neuropharmacology 27: 915 (1988).

    Article  Google Scholar 

  36. P. Black, and R.E. Myers, Brainstem mediation of visual perception in a higher primate, Trans. Am. Neurol. Assoc. 93: 191 (1968).

    PubMed  CAS  Google Scholar 

  37. T.H. Meikle, and J.A. Sechzer, Interocular transfer of brightness discrimination in split-brain cats, Science 132: 734 (1960).

    Article  PubMed  CAS  Google Scholar 

  38. C.B. Trevarthen, Double visual learning in split-brain monkeys, Science 136: 258 (1962).

    Article  PubMed  CAS  Google Scholar 

  39. T.J. Hoffman, C.L. Sheridan, and D.M. Levinson, Interocular transfer in albino rats as a function of forebrain plus midbrain commissurotomy, Physiol. Behay. 27: 279 (1981).

    Article  Google Scholar 

  40. T.H. Meikle, Failure of interocular transfer of brightness discrimination, Nature 202: 1243 (1964).

    Article  PubMed  CAS  Google Scholar 

  41. R. Thompson, and I. Rich, Differential effects of posterior thalamic lesions on retention of various visual habits, J. Comp. Physiol. Psychol. 56: 60 (1963).

    Article  Google Scholar 

  42. R. Thompson, and P.H. Spiliotis, Subcortical lesions and retention of a brightness discrimination in the rat; Appetitive vs. aversive motivation, Physiol. Psychol. 9: 63 (1981).

    Google Scholar 

  43. C.K. Peck, S.G. Crewther, and C.R. Hamilton, Partial interocular transfer of brightness and movement discrimination by split-brain, Brain Res. 163: 61 (1979).

    Article  PubMed  CAS  Google Scholar 

  44. C.R. Butler, A memory-record for visual discrimination habits produced in both cerebral hemispheres of monkey when only one hemisphere has received direct visual information, Brain Res. 10: 152 (1968).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yonemori, F., Yamada, H., Uemura, A., Takeuchi, S., Toide, K., Iwata, K. (1995). Effect of JTP-2942, a Novel TRH Analogue, on Cognitive Function and Learning in Rodents. In: Hanin, I., Yoshida, M., Fisher, A. (eds) Alzheimer’s and Parkinson’s Diseases. Advances in Behavioral Biology, vol 44. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9145-7_55

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9145-7_55

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9147-1

  • Online ISBN: 978-1-4757-9145-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics