Skip to main content

Spatio-Temporal Source Estimation of Evoked Potentials by Wavelet-Type Decomposition

Wavelet-Type Source Estimation of EPs

  • Chapter
Advances in Processing and Pattern Analysis of Biological Signals

Abstract

Scalp recording of electrical events allows evaluation of human cerebral function, but contributions of the specific brain structures generating the recorded activity are ambiguous. This problem is ill-posed and cannot be solved without auxiliary physiological knowledge about the spatio-temporal characteristics of the generators’ activity. The widely-used model to describe the evoked potentials’ sources is a set of current dipoles. It does not include a temporal model of source activity and does not propose a solution of the number of sources that are active simultaneously nor how to differentiate their contributions.

In our multichannel wavelet-type decomposition, scalp recorded signals are decomposed into a combination of physiologically-based wavelets. The coherent activity of a population of neurons may be derived by convolving a single cell’s electrical contribution with the population’s Gaussian temporal distribution of activity. Thus, we chose the Hermite Functions (derived from the Gaussian function to form mono-, bi- and tri-phasic waveforms) as the mathematical model to describe the temporal pattern of mass neural activity.

For each wavelet we solve the inverse problem for two symmerically positioned and oriented dipoles, one of which attains zero magnitude when a single source is more suitable. We use the wavelet to model the temporal activity pattern of the symmetrical dipoles. By this we reduce the dimension of inverse problem and find a plausible solution. Once the number and the initial parameters of the sources are given, we can apply multiple source estimation to correct the solution for generators with overlapping activity.

Application of the procedure to subcortical and cortical components of short-latency visual evoked potentials (SVEP) in response to high-intensity, strobe flashes, demonstrates its feasibility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achim. A., Richer, F.. Saint-Hilaire, J.M.,1991, Methodological considerations for the evaluation of Spatio-Temporal Source Models (STAM). Electroenceph. Clin. Neurophysiol., 79: 227–240.

    Google Scholar 

  • Allison. G., Goff. W. R.. Williamson, P.D.. and Van Gilder. J. C., 1980, On the neural origin of early components of the human somatosensory evoked potential. In Desmedt J.E. (ed.): Clinical Uses of Cerebral. Brainstem and Spinal Somatosensory Evoked Potentials. Progress in Clinical Neurophysiology.

    Google Scholar 

  • Basel, Karger. 7: 51-68. Daubechies. L, 1988, Orthogonal bases of compactly supported wavelets, Commun. Pure Appl. Math. 41: 909-996.

    Google Scholar 

  • Donchin, E., 1980, Event-related brain potentials: a tool in the study of human information processing. In: Begleiter H. (ed.) Evoked Potentials in Psychiatry. Plenum, New York.

    Google Scholar 

  • Duffy, F. H.. 1982, Topographic display of evoked potentials: clinical applications of brain electrical activity mapping (BEAM) evoked potentials, Ann. NY.Acad. Sci. 388: 183–198.

    Article  Google Scholar 

  • Fender, D. H.. 1987, Source localization of brain electrical activity. In: Gevins, A. S, and Remond, A. (eds.), Methods of Analysis of Brain Electrical and Magnetic Signals. Handbook of Electroencephalographv and Clinical Neurophysiology. Elsevier, Amsterdam, Vol. 1, 13: 355–403.

    Google Scholar 

  • Gath, I.. and Geva, A. B., 1989. Unsupervised optimal fuzzy clustering. IEEE Trans. Pattern Anal. Machine Intel. 7: 773–781.

    Article  Google Scholar 

  • Genossar, T., and Porat, M., 1992, Optimal bi-orthonormal approximation of signals. IEEE Trans. on Systems, Man, and Cybernetics 22 (3): 449.

    Article  Google Scholar 

  • Geva, A. B., Pratt H., and Zeevi Y. Y., 1993, WaveletDecomposition of multichannel evoked potential s, Electroenceph. Clin. Neurophysiol. 87: S25.

    Article  Google Scholar 

  • Geva, A. B., Pratt, H., 1994, Unsupervised clustering of evoked potentials by waveform, Med. & Biol. Eng. & Comput. 32: 543–550.

    Article  Google Scholar 

  • Geva. A. B., Pratt. H., and Zeevi, Y Y., 1995, Spatio-temporal multiple source localization by wavelet-type decomposition of evoked potentials. Electroenceph. Clin. Neurophysiol. In press.

    Google Scholar 

  • Lehmann. D., 1987, Principles of spatial analysis. In: Gevins,A. S, and Remond. A. (eds.), Methods of Analysis of Brain Electrical and Magnetic Signals. Handbook of Electroencephalographv and Clinical Neurophysiology. Elsevier: Amsterdam, vol. 1, 12: 309–354.

    Google Scholar 

  • Mallat, S. Ci., 1989, A theory for multiresolution signal decomposition: the wavelet representation, IEEE Trans. on Pattern Analysis and Machine Intelligence 11:674-693.

    Google Scholar 

  • McGillem, C. D., and Aunon, J. L, 1987, Analysis of event-related potentials. In: Gevins, A. S.. and Remond, A. (eds.), Methods and Analysis ofBrain Electrical and Magnetic Signals. Handbook ofElectroencephalographv and Clinical Neurophysiology. Elsevier: Amsterdam. vol. 1, 5. 131- I 69.

    Google Scholar 

  • Moller, A. R., Jannetta, P. J., and Jho, H. D., 1990, Recordings from human dorsal column nuclei using stimulation of the lower limb, Neurosurgery 26: 291–299.

    Article  Google Scholar 

  • Morioka, T., Shima, F., Kato, M., and Fukui, M., 1991, Direct recording of somatosensory evoked potentials in the vicinity of the dorsal column nuclei in man: their generator mechanisms and contribution to the scalp far-field potentials, Electroenceph. Clin. Neurophysiol. 80: 215–220.

    Article  Google Scholar 

  • Morton, J., Marcus, S., and Frankish, C., 1976, Perceptual centers (P-centers), Psychol. Rev. 83: 405–408.

    Article  Google Scholar 

  • Mosher, J. C., Lewis, P. S., and Leahy, R. M., 1992, Multiple dipole modeling and localization from spatio-temporal MEG data, IEEE Trans. on Biomed. Eng. 39: 541–557.

    Article  Google Scholar 

  • Nunez, P.L., 1981, Electric Fields of the Brain. The Neurophysics ofEEG. Oxford: New York.

    Google Scholar 

  • Papakostopolous, D. A., and Crow, H. J., 1980, Direct recording of the somatosensory evoked potentials from the cerebral cortex of man and the difference between precentral and postcentral potentials. In Desmedt, J.E. (ed.): Clinical Uses of Cerebral, Brainstem and Spinal Somatosensory Evoked Potentials. Progress in Clinical Neurophysiology. Karger:Basel, 7: 15–26.

    Google Scholar 

  • Plonsey, R., and Fleming, D. G., 1969, Bioelectric Phenomena. McGraw-Hill: New York. 5: 203-275.

    Google Scholar 

  • Porat, M., and Zeevi, Y. Y., 1988, The generalized Gabor scheme of image representation in biological and machine vision, IEEE Trans. Pattern Anal. Machine Intel. 10: 452–468.

    Article  MATH  Google Scholar 

  • Pratt, H., Michalewski, H. J., Barrett, G., and Starr, A., 1989, Brain potentials in a memory-scanning task: I. Modality and task effects on potentials to probes, Electroenceph. Clin. Neurophysiol. 72: 407–42 I.

    Article  Google Scholar 

  • Pratt, H.. Martin, W. H., Bleich, N., Zaaroor, M., and Schacham, S. E., 1994, A high intensity, goggle-mounted flash stimulator for short latency visual evoked potentials. Electroenceph. Clin. Neurophysiol. 92: 469–472.

    Article  Google Scholar 

  • Regan, D., 1989, Human Brain Electrophysiology. Evoked Potentials und Evoked Magnetic Fields in Science and Medicine. Elsevier: Amsterdam, pp. 57–66.

    Google Scholar 

  • Rioul, O., and Duhamel, P., 1992. Fast algorithms for discrete and continuous wavelet transforms, IEEE Trans. Inform. Theory 1T38: 569–586.

    Google Scholar 

  • Scherg, M.. and von Cramon. D., 1985. A new interpretation of the generators of BAEP waves I-V. Results of spatio-temporal dipole model, IEEE Trans. Inform. Theory IT62: 290–299.

    Google Scholar 

  • Slimp. J. C., Minas, L. B., Stolov, W. C., and Wyler, A. R., 1985. Somatosensory evoked potentials after removal of somatosensory cortex. Electroenceph. Clin. Neurophysiol. 37: 663–669.

    Google Scholar 

  • Tichonov, A. N., and Arsenin, V. Y., 1977, Solution of Ill-Posed Problems. Wiley: New York.

    Google Scholar 

  • Urasaki, E., Wada, S., Kadoya, C., Yokota, A., Matsuoka, S., and Shima, F.,1990, Origin of scalp far-field NJ 8 of SSEPs in response to median nerve stimulation, Electroenceph. Clin. Neurophysiol. 77:39-5 I.

    Google Scholar 

  • Urasaki, E., Uematsu, S., and Lesser, R. P., 1993, Short latency somatosensory evoked potentials recorded around the human upper brainstem, Electroenceph. Clin. Neurophysiol. 88:92-104.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Geva, A.B., Pratt, H., Zeevi, Y.Y. (1996). Spatio-Temporal Source Estimation of Evoked Potentials by Wavelet-Type Decomposition. In: Gath, I., Inbar, G.F. (eds) Advances in Processing and Pattern Analysis of Biological Signals. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9098-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9098-6_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9100-6

  • Online ISBN: 978-1-4757-9098-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics