Skip to main content

Multivariate Allometry

  • Chapter
Advances in Morphometrics

Part of the book series: NATO ASI Series ((NSSA,volume 284))

Abstract

The subject of allometry is variation in morphometric variables or other features of organisms associated with variation in size. Such variation can be produced by several biological phenomena, and three different levels of allometry are therefore distinguished: static allometry reflects individual variation within a population and age class, ontogenetic allometry is due to growth processes, and evolutionary allometry is the result of phylogenetic variation among taxa. Most multivariate studies of allometry have used principal component analysis. I review the traditional technique, which can be interpreted as a least-squares fit of a straight line to the scatter of data points in a multidimensional space spanned by the morphometric variables. I also summarize some recent developments extending principal component analysis to multiple groups. “Size correction” for comparisons between groups of organisms is an important application of allometry in morphometrics. I recommend use of Burnaby’s technique for “size correction” and compare it with some similar approaches. The procedures described herein are applied to a data set on geographic variation in the waterstrider Gerris costae (Insecta: Heteroptera: Gerridae). In this example, I use the bootstrap technique to compute standard errors and perform statistical tests. Finally, I contrast this approach to the study of allometry with some alternatives, such as factor analytic and geometric approaches, and briefly analyze the different notions of allometry upon which these approaches are based.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Airoldi, J.-P., and B. K. Flury. 1988. An application of common principal component analysis to cranial morphometry ofMicrotus cali/ornicus and M. ochrogaster (Mammalia, Rodentia ). Journal of Zoology (London) 216: 21–36.

    Google Scholar 

  • Anderson, T. W. 1963. Asymptotic theory for principal component analysis. Annals of Mathematical Statistics 34: 122–148.

    Article  Google Scholar 

  • Anstey, R. L. 1987. Astogeny and phylogeny: Evolutionary heterochrony in Paleozoic bryozoans. Paleobiology 13: 20–43.

    Google Scholar 

  • Arnold, S. J. 1992. Constraints on phenotypic evolution. American Naturalist 140:S85-S 107.

    Google Scholar 

  • Atchley, W. R., and B. K. Hall. 1991. A model for development and evolution of complex morphological structures. Biological Reviews 66: 101–157.

    Article  PubMed  CAS  Google Scholar 

  • Bernays, E. A. 1986. Diet-induced head allometry among foliage-chewing insects and its importance for graminivores. Science 231: 495–497.

    Article  PubMed  CAS  Google Scholar 

  • Blackstone, N. W. 1987. Specific growth rates of parts in a hennit crab Paguru.s longicarpu.s: A reductionist approach to the study of allometry. Journal of Zoology (London) 211: 531–545.

    Google Scholar 

  • Boag, P. T. 1984. Growth and allometry of external morphology in Darwin’s finches (Geospiza) on Isla Daphne Major, Galapagos. Journal of Zoology (London) 204: 413–441.

    Google Scholar 

  • Boitard, M., J. Lefebvre, and M. Solignac. 1982. Analyse en composantes principales de la variabilité de taille, de croissance et de conformation des espèces du complexe Jaera albifrons ( Crustacés Isopodes ). Cahiers de Biologie Marine 23: 115–142.

    Google Scholar 

  • Bookstein, F. L. 1989. “Size and shape”: A comment on semantics. Systematic Zoology 38:173–180.

    Google Scholar 

  • Bookstein, F. L. 1991. Morphometric tools for landmark data: Geometry and biology. Cambridge University Press: Cambridge.

    Google Scholar 

  • Bookstein, F. L. 1993. A brief history of the morphometric synthesis. Pages 15–40 in L. F. Marcus, E. Bello, and A. Garcia-Valdecasas, (eds.), Contributions to morphometrics. Monografias del Museo Nacional de Ciencias Naturales 8, Madrid.

    Google Scholar 

  • Bookstein, F. L., B. Chernoff, R. L. Elder, J. M. Humphries, Jr., G. R. Smith, and R. E. Strauss. 1985. Morphometrics in Evolutionary Biology: The geometry of size and shape change, with examples from fishes. Academy of Natural Sciences of Philadelphia Special Publication 15.

    Google Scholar 

  • Bryant, P. 1984. Geometry, statistics, probability: Variations on a common theme. American Statistician 38: 38–48.

    Google Scholar 

  • Burnaby, T. P. 1966. Growth-invariant discriminant functions and generalized distances. Biometrics 22: 96–110.

    Article  Google Scholar 

  • Buss, L. W., and N. W. Blackstone. 1991. An experimental exploration of Waddington’s epigenetic landscape. Philosophical Transactions of the Royal Society of London B 332: 49–58.

    Article  Google Scholar 

  • Cane, W. P. 1993. The ontogeny of postcranial integration in the common tern, Sterna hirundo. Evolution 47: 1138–1151.

    Article  Google Scholar 

  • Cheverud, J. M. 1982. Relationships among ontogenetic, static, and evolutionary allometry. American Journal of Physical Anthropology 59: 139–149.

    Article  PubMed  CAS  Google Scholar 

  • Cheverud, J. M., G. P. Wagner, and M. M. Dow. 1989. Methods for the comparative analysis of variation patterns. Systematic Zoology 38: 201–213.

    Article  Google Scholar 

  • Cock, A. G. 1966. Genetical aspects of metrical growth and form in animals. Quarterly Review of Biology 41: 131–190.

    Article  PubMed  CAS  Google Scholar 

  • Corner, B. D., and J. T. Richtsmeier. 1991. Morphometric analysis of craniofacial growth in Cehas apella. American Journal of Physical Anthropology 84: 323–342.

    Article  PubMed  CAS  Google Scholar 

  • Corti, M., R. S. Thorpe, L. Sola, V. Sbordoni, and S. Cataudella. 1988. Multivariate morphometrics in aquaculture: A case study of six stocks of the common carp (Ctprinus carpio) from Italy. Canadian Journal of Fisheries and Aquatic Sciences 45: 1548–1554.

    Article  Google Scholar 

  • Cowley, D. E., and W. R. Atchley. 1990. Development and quantitative genetics of correlation structure among body parts of Drosophila melanogaster. American Naturalist 135: 242–268.

    Article  Google Scholar 

  • Cowley, D. E., and W. R. Atchley. 1992. Quantitative genetic models for development, epigenetic selection, and phenotypic evolution. Evolution 46: 495–518.

    Article  Google Scholar 

  • Creighton, G. K., and R. E. Strauss. 1986. Comparative patterns of growth and development in cricetine rodents and the evolution of ontogeny. Evolution 40: 94–106.

    Article  Google Scholar 

  • Cuzin-Roudy, J. 1975. Etude de la variabilité et de l’allométrie de taille chez Notonecta maculata Fabricius ( Insectes, hétéroptères), par les méthodes classiques et par la méthode des composantes principales. Archives de Zoologie Expérimentale et Générale 116: 173–227.

    Google Scholar 

  • Cuzin-Roudy, J., and Ph. Laval. 1975. A canonical discriminant analysis of post-embryonic development in Notonecta maculata Fabricius ( Insecta: Heteroptera). Growth 39: 251–280.

    Google Scholar 

  • Darroch, J. N., and J. E. Mosimann. 1985. Canonical and principal components of shape. Biometrika 72: 241–252.

    Article  Google Scholar 

  • Daudin, J. J., C. Duby, and P. Trecourt. 1988. Stability of principal component analysis studied by the bootstrap method. Statistics 19: 241–258.

    Article  Google Scholar 

  • Davies, R. G., and V. Brown. 1972. A multivariate analysis of postembryonic growth in two species of Ectohius (Dictyoptera: Blattidae ). Journal of Zoology (London) 168: 51–79.

    Google Scholar 

  • Diaconis, P., and B. Efron. 1983. Computer-intensive methods in statistics. Scientific American 248 (May): 116–130.

    Article  Google Scholar 

  • Efron, B., and G. Gong. 1983. A leisurely look at the bootstrap, the jackknife, and cross-validation. American Statistician 37: 36–48.

    Google Scholar 

  • Efron, B., and R. Tibshirani. 1986. Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Statistical Science 1: 54–77.

    Article  Google Scholar 

  • Efron, B., and R. J. Tibshirani. 1993. An introduction to the bootstrap. Chapman and Hall: New York.

    Google Scholar 

  • Felsenstein, J. 1985. Phylogenies and the comparative method. American Naturalist 125: I - 15.

    Google Scholar 

  • Flury, B. 1988. Common principal components and related multivariate models. Wiley: New York.

    Google Scholar 

  • Flury, B., and H. Riedwyl. 1988. Multivariate statistics: A practical approach. Chapman and Hall: London.

    Book  Google Scholar 

  • Garland, T., Jr., P. H. Harvey, and A. R. Ives. 1992. Procedures for the analysis of comparative data using phylogenetically independent contrasts. Systematic Biology 41: 18–32.

    Google Scholar 

  • Gibson, A. R., A. J. Baker, and A. Moeed. 1984. Morphometric variation in introduced populations of the common myna (Acridotheres tristis): An application of the jackknife to principal component analysis. Systematic Zoology 33: 408–421.

    Google Scholar 

  • Gould, S. J. 1966. Allometry and size in ontogeny and phylogeny. Biological Reviews 41: 587–640.

    Article  PubMed  CAS  Google Scholar 

  • Gould, S. J. 1975. Allometry in primates, with emphasis on scaling and the evolution of the brain. Contributions to Primatology 5: 244–292.

    PubMed  CAS  Google Scholar 

  • Gould, S. J. 1989. A developmental constraint in Carton, with comments on the definition and interpretation of constraint in evolution. Evolution 43: 516–539.

    Article  Google Scholar 

  • Gower, J. C. 1976. Growth-free canonical variates and generalized inverses. Bulletin of the Geological Institutions of the University of Uppsala, N. S. 7: 1–10.

    Google Scholar 

  • Günther, B. 1975. Dimensional analysis and theory of biological similarity. Physiological Reviews 55: 659–699.

    PubMed  Google Scholar 

  • Hills, M. 1982. Bivariate versus multivariate allometry: A note on a paper by Jungers and German. American Journal of Physical Anthropology 59: 321–322.

    Google Scholar 

  • Hopkins, J. W. 1966. Some considerations in multivariate allometry. Biometrics 22: 747–760.

    Article  Google Scholar 

  • Humphries, J. M., F. L. Bookstein, B. Chernoff, G. R. Smith, R. L. Elder, and S. G. Poss. 1981. Multivariate discrimination by shape in relation to size. Systematic Zoology 30: 291–308.

    Google Scholar 

  • Huxley, J. S. 1932. Problems of relative growth. Methuen: London. Reprinted 1972, Dover Publications: New York.

    Google Scholar 

  • Huxley, J. S., and G. Teissiec 1936. Terminology of relative growth. Nature 137: 780–781.

    Article  Google Scholar 

  • Jackson, J. E. 1990. A user’s guide to principal components. Wiley: New York.

    Google Scholar 

  • Jeune, B., and R. Sattler. 1992. Multivariate analysis in process morphology of plants. Journal of Theoretical Biology 156: 147–167.

    Google Scholar 

  • Jobson, J. D. 1992. Applied multivariate data analysis. Volume II: Categorical and multivariate methods. Springer-Verlag: New York.

    Book  Google Scholar 

  • Johnson, R. A., and D. W. Wichern. 1988. Applied multivariate statistical analysis. 2nd edition. Prentice-Hall: Englewood Cliffs, New Jersey.

    Google Scholar 

  • Jolicoeur, P. 1963. The multivariate generalization of the allometry equation. Biometrics 19: 497–499.

    Article  Google Scholar 

  • Jolliffe, I. T. 1986. Principal component analysis. Springer-Verlag: New York.

    Book  Google Scholar 

  • Jones, C. S. 1992. Comparative ontogeny of a wild cucurbit and its derived cultivar. Evolution 46: 1827–1847.

    Article  Google Scholar 

  • Jones, C. S. 1993. Heterochrony and heteroblastic leaf development in two subspecies of Cucurbita argyrosperma ( Cucurbitaceae ). American Journal of Botany 80: 778–795.

    Google Scholar 

  • Jungers, W. L., and R. Z. German. 1981. Ontogenetic and interspecific skeletal allometry in nonhuman primates: Bivariate versus multivariate analysis. American Journal of Physical Anthropology 55: 195–202.

    Google Scholar 

  • Jungers, W. L., T. M. Cole, III, and D. W. Owsley. 1988. Multivariate analysis of relative growth in the limb bones of Ankara Indians. Growth, Development and Aging 52: 103–107.

    Google Scholar 

  • Kampny, C. M., T. A. Dickinson, and N. G. Dengler. 1993. Quantitative comparison of floral development in Veronica chamaedrys and Veronicastrum virginicum ( Scrophulariaceae ). American Journal of Botany 80: 449–460.

    Google Scholar 

  • Katz, M. J. 1980. Allometry formula: A cellular model. Growth 44: 89–96.

    Google Scholar 

  • Klingenberg, C. P. 1992. Multivariate morphometrics of geographic variation of Gerris costae ( Heteroptera: Gerridae) in Europe. Revue Suisse de Zoologie 99: 11–30.

    Google Scholar 

  • Klingenberg, C. P., and R. Froese. 1991. A multivariate comparison of allometric growth patterns. Systematic Zoology 40: 410–419.

    Article  Google Scholar 

  • Klingenberg, C. P., and J. R. Spence. 1993. Heterochrony and allometry: Lessons from the waterstrider genus Limnoporus. Evolution 47: 1834–1853.

    Article  Google Scholar 

  • Klingenberg, C. P., and M. Zimmermann. 1992a. Static, ontogenetic, and evolutionary allometry: A multivariate comparison in nine species of water striders. American Naturalist 140: 601–620.

    Google Scholar 

  • Klingenberg, C. P., and M. Zimmermann. 1992b. Dyar’s rule and multivariate allometric growth in nine species of waterstriders (Heteroptera: Gerridae ). Journal of Zoology (London) 227: 453–464.

    Google Scholar 

  • LaBarbera, M. 1989. Analyzing body size as a factor in ecology and evolution. Annual Review of Ecology and Systematics 20: 97–117.

    Article  Google Scholar 

  • Laird, A. K. 1965. Dynamics of relative growth. Growth 29: 249–263.

    PubMed  CAS  Google Scholar 

  • Laird, A. K., A. D. Barton, and S. A. Tyler. 1968. Growth and time: An interpretation of allometry. Growth 32: 347–354.

    Google Scholar 

  • Leamy, L. and W. Atchley. 1984a. Static and evolutionary allometry of osteometric traits in selected lines of rats. Evolution 38: 47–54.

    Article  Google Scholar 

  • Leamy, L., and W. R. Atchley. 1984b. Morphometric integration in the rat (Rattus sp.) scapula. Journal of Zoology (London) 202: 43–56.

    Article  Google Scholar 

  • Leamy, L., and D. Bradley. 1982. Static and growth allometry of morphometric traits in randombred house mice. Evolution 36: 1200–1212.

    Article  Google Scholar 

  • Lessa, E. P., and J. L. Patton. 1989. Structural constraints, recurrent shapes, and allometry in pocket gophers (genus Thomomys). Biological Journal of the Linnean Society 36: 349–363.

    Article  Google Scholar 

  • Livezey, B. C. 1989. Morphometric patterns in Recent and fossil penguins (Ayes, Sphenisciformes ). Journal of Zoology (London) 219: 269–307.

    Google Scholar 

  • Loehlin, J. C. 1987. Latent variable models: An introduction to factor, path, and structural Analysis. Lawrence Erlbaum Associates: Hillsdale, New Jersey.

    Google Scholar 

  • MacLeod, N., and J. A. Kitchell. 1990. Morphometrics and evolutionary inference: A case study involving ontogenetic and developmental aspects of foraminiferal evolution. Pages 283–299 in F. J. Rohlf and F. L. Bookstein, (eds.), Proceedings of the Michigan morphometrics workshop. University of Michigan Museum of Zoology Special Publication No. 2: Ann Arbor.

    Google Scholar 

  • Maddison, W. P., and D. R. Maddison. 1992. MacClade: Analysis of phylogeny and character evolution. Sinauer Associates: Sunderland, Massachusetts.

    Google Scholar 

  • Manly, B. F. J. 1991. Randomization and Monte Carlo methods in biology. Chapman and Hall: London.

    Book  Google Scholar 

  • Marcus, L. F. 1990. Traditional morphometrics. Pages 77–122 in F. J. Rohlf and F. L. Bookstein, (eds.), Proceedings of the Michigan morphometrics workshop. University of Michigan Museum of Zoology Special Publication No. 2: Ann Arbor.

    Google Scholar 

  • Marcus, L. F. 1993. Some aspects of multivariate statistics for morphometrics. Pages 95–130 in L. F. Marcus, E. Bello, and A. Garcia-Valdecasas, (eds.), Contributions to morphometrics. Monografias del Museo Nacional de Ciencias Naturales 8, Madrid.

    Google Scholar 

  • Martins, E. P., and T. Garland, Jr. 1991. Phylogenetic analyses of the correlated evolution of continuous characters: A simulation study. Evolution 45: 534–557.

    Google Scholar 

  • Maynard Smith, J., R. Burian, S. Kauffman, P. Alberch, J. Campbell, B. Goodwin, R. Lande, and L. Wolpert. 1985. Developmental constraints and evolution. Quarterly Review of Biology 60: 265–287.

    Article  Google Scholar 

  • McGillivray, W. B. 1985. Size, sexual size dimorphism, and their measurement in Great Horned Owls in Alberta. Canadian Journal of Zoology 63: 2364–2372.

    Article  Google Scholar 

  • McLellan, T. 1993. The roles of heterochrony and heteroblasty in the diversification of leaf shapes in Begonia dregei ( Begoniaceae ). American Journal of Botany 80: 796–804.

    Google Scholar 

  • Meyer, A. 1990. Morphometrics and allometry in the trophically polymorphic cichlid fish, Cichlastoma citrinellum: Alternative adaptations and ontogenetic changes in shape. Journal of Zoology (London) 221: 237–260.

    Google Scholar 

  • Mosimann, J. E. 1970. Size allometry: Size and shape variables with characterizations of the lognormal and generalized gamma distributions. Journal of the American Statistical Association 65: 930–945.

    Google Scholar 

  • Mosimann, J. E., and F. C. James. 1979. New statistical methods for allometry with application to Floridared-winged blackbirds. Evolution 33: 444–459.

    Article  Google Scholar 

  • Owen, J. G., and M. A. Chmielewski. 1985. On canonical variates analysis and the construction of confidence ellipses in systematic studies. Systematic Zoology 34: 366–374.

    Article  Google Scholar 

  • Pagel, M. D., and P. H. Harvey. 1988. Recent developments in the analysis of comparative data. Quarterly Review of Biology 63: 413–440.

    Article  PubMed  CAS  Google Scholar 

  • Pandolfi, J. M. 1988. Heterochrony in colonial marine animals. Pages 135–158 in M. L. McKinney, (ed.), Heterochrony in evolution: A multidisciplinary approach. Plenum Press: New York.

    Chapter  Google Scholar 

  • Patton, J. L., and P. V. Brylski. 1987. Pocket gophers in alfalfa fields: Causes and consequences of habitat-related body size variation. American Naturalist 130: 493–506.

    Google Scholar 

  • Paulsen, S. M., and H. F. Nijhout. 1993. Phenotypic correlation structure among elements of the color pattern in Precis coenia ( Lepidoptera: Nymphalidae). Evolution 47: 593–618.

    Google Scholar 

  • Pearson, K. 1901. On lines and planes of closest fit to systems of points in space. Philosophical Magazine and Journal of Science, 6th series 2: 559–572.

    Article  Google Scholar 

  • Pimentel, R. A. 1979. Morphometrics: The multivariate analysis of biological data. Kendall/Hunt: Dubuque, Iowa.

    Google Scholar 

  • Reeve, E. C. R., and J. S. Huxley. 1945. Some problems in the study of allometric growth. Pages 121–156 in W. E. Le Gros Clark and P. B. Medawar (eds.), Essays on growth and form presented to D’Arcy Wentworth Thompson. Clarendon Press: Oxford.

    Google Scholar 

  • Reilly, S. M. 1990. Comparative ontogeny of cranial shape in salamanders using resistant fit theta rho analysis. Pages 311–321 in. F. J. Rohlf and F. L. Bookstein (eds.), Proceedings of the Michigan morphometrics workshop. University of Michigan Museum of Zoology, Special Publication 2.

    Google Scholar 

  • Reiss, M. J. 1989. The allometry of growth and reproduction. Cambridge University Press: Cambridge, U.K.

    Book  Google Scholar 

  • Reyment, R. A. 1991. Multidimensional palaeobiology. Pergamon Press: Oxford.

    Google Scholar 

  • Reyment, R. A., and C. F. Banfield. 1976. Growth-free canonical variates applied to fossil foraminifers. Bulletin of the Geological Institutions of the University of Uppsala, N. S. 7: 11–21.

    Google Scholar 

  • Reyment, R. A., R. E. Blackith, and N. A. Campbell. 1984. Multivariate Morphometrics. 2nd edition. Academic Press, London.

    Google Scholar 

  • Riska, B. 1981. Morphological variation in the horseshoe crab Limulus polyphemus. Evolution 35: 647–658.

    Article  Google Scholar 

  • Riska, B. 1986. Some models for development, growth, and morphometric correlation. Evolution 40: 1303 1311.

    Google Scholar 

  • Riska, B. 1989. Composite traits, selection response, and evolution. Evolution 43: 1172–1191.

    Article  Google Scholar 

  • Rohlf, F. J. 1990. Morphometrics. Annual Review of Ecology and Systematics 21: 299–316.

    Article  Google Scholar 

  • Rohlf, F. J. 1993. Relative warp analysis and an example of its application to mosquito wings. Pages 131–159 in L. F. Marcus, E. Bello, and A. Garcia-Valdecasas (eds.), Contributions to morphometrics. Monografias del Museo Nacional de Ciencias Naturales 8, Madrid.

    Google Scholar 

  • Rohlf, F. J., and F. L. Bookstein. 1987. A comment on shearing as a method for “size correction.” Systematic Zoology 36: 356–367.

    Article  Google Scholar 

  • Rohlf, F. J., and L. F. Marcus. 1993. A revolution in morphometrics. Trends in Ecology and Evolution 8: 129–132.

    Article  Google Scholar 

  • Sattler, R. 1992. Process morphology: Structural dynamics in development and evolution. Canadian Journal of Botany 70: 708–714.

    Google Scholar 

  • Shea, B. T. 1985. Bivariate and multivariate growth allometry: Statistical and biological considerations. Journal of Zoology (London) 206: 367–390.

    Google Scholar 

  • Shea, B. T. 1992. Developmental perspective on size change and allometry in evolution. Evolutionary Anthropology 1: 125–134.

    Article  Google Scholar 

  • Shea, B. T., R. E. Hammer, R. L. Brinster, and M. R. Ravosa. 1990. Relative growth of the skull and postcranium in giant transgenic mice. Genetical Research, Cambridge 56: 21–34.

    Google Scholar 

  • Sinervo, B. 1993. The effect of offspring size on physiology and life history. BioScience 43: 210–218.

    Google Scholar 

  • Smith, L. D., and A. R. Palmer. 1994. Effects of manipulated diet on size and performance of brachyuran crab claws. Science 264: 710–712.

    Article  PubMed  CAS  Google Scholar 

  • Smith, R. J. 1993. Logarithmic transformation bias in allometry. American Journal of Physical Anthropology 90: 215–228.

    Article  Google Scholar 

  • Solignac, M., M.-L. Cariou, and M. Wimitzki, 1990. Variability, specificity and evolution of growth gradients in the species complex Jaera albifrons (Isopoda, Asellota ). Crustaceana 59: 121–145.

    Google Scholar 

  • Somers, K. M. 1986. Multivariate allometry and removal of size with principal components analysis. Systematic Zoology 35: 359–368.

    Article  Google Scholar 

  • Somers, K. M. 1989. Allometry, isometry and shape in principal component analysis. Systematic Zoology 38: 169–173.

    Article  Google Scholar 

  • Sprent, P. 1972. The mathematics of size and shape. Biometrics 28: 23–37.

    Article  PubMed  CAS  Google Scholar 

  • Stauffer, D. F., E. O. Garton, and R. K. Steinhorst. 1985. A comparison of principal components from real and random data. Ecology 66: 1693–1698.

    Article  Google Scholar 

  • Strauss, R. E. 1985. Evolutionary allometry and variation in body form in the South American catfish genus Corydoras ( Callichthyidae ). Systematic Zoology 34: 381–396.

    Google Scholar 

  • Strauss, R. E. 1990a. Patterns of quantitative variation in lepidopteran wing morphology: The convergent groups Heliconiinae and Ithomiinae ( Papilionoidea: Nymphalidae). Evolution 44: 86–103.

    Google Scholar 

  • Strauss, R. E. 19906. Heterochronic variation in the developmental timing of cranial ossifications in poecilid fishes (Cyprinodontiformes). Evolution 44: 1558–1567.

    Google Scholar 

  • Strauss, R. E., and F. L. Bookstein. 1982. The truss: Body form reconstructions in morphometrics. Systematic Zoology 31: 113–135.

    Google Scholar 

  • Teissier, G. 1955. Allométrie de taille et variabilité chez Maiâ squinado. Archives de Zoologie Expérimentale et Générale 92: 221–264.

    Google Scholar 

  • Thomas, R. D. K., and W.-E. Reif. 1993. The skeleton space: A finite set of organic designs. Evolution 47: 341–360.

    Google Scholar 

  • Thorpe, R. S. 1983. A review of the numerical methods for recognizing and analyzing racial differentiation. Pages 404–423 in J. Felsenstein, (ed.), Numerical taxonomy. Springer-Verlag: Berlin.

    Chapter  Google Scholar 

  • Thorpe, R. S., and M. Baez. 1987. Geographic variation within an island: Univariate and multivariate contouring of scalation, size, and shape of the lizard Gallotia galloti. Evolution 41: 256–268.

    Article  Google Scholar 

  • Voss, R. S., L. F. Marcus, and P. Escalante. 1990. Morphological evolution in muroid rodents I. Conservative patterns of craniometric covariance and their ontogenetic basis in the neotropical genus Zygodontomys. Evolution 44: 1568–1587.

    Article  Google Scholar 

  • Voss, R. S., and L. F. Marcus. 1992. Morphological evolution in muroid rodents II. Craniometric factor divergence in seven neotropical genera, with experimental results from Zygodontomys. Evolution 46: 1918–1934.

    Article  Google Scholar 

  • Walker, J. A. 1993. Ontogenetic allometry of threespine stickleback body form using landmark-based morphometrics. Pages 193–214 in L. F. Marcus, E. Bello, and A. Garcia-Valdecasas, (eds.), Contributions to morphometrics. Monografias del Museo Nacional de Ciencias Naturales 8, Madrid.

    Google Scholar 

  • Wheeler, D. E. 1991. The developmental basis of worker caste polymorphism in ants. American Naturalist 138: 1218–1238.

    Article  Google Scholar 

  • Wiig, 0. 1985. Multivariate variation in feral American mink (Mustela vison) from Southern Norway. Journal of Zoology (London) 206: 441–452.

    Article  Google Scholar 

  • Wright, S. 1968. Evolution and the genetics of populations. Volume 1. Genetic and biometric foundations. University of Chicago Press: Chicago.

    Google Scholar 

  • Zelditch, M. L. 1987. Evaluating models of developmental integration in the laboratory rat using confirmatory factor analysis. Systematic Zoology 36: 368–380.

    Article  Google Scholar 

  • Zelditch, M. L. 1988. Ontogenetic variation in patterns of phenotypic integration in the laboratory rat. Evolution 42: 28–41.

    Article  Google Scholar 

  • Zelditch, M. L., F. L. Bookstein, and B. L. Lundrigan. 1992. Ontogeny of integrated skull growth in the cotton rat Sigmodon fulviventer. Evolution 46: 1164–1180.

    Article  Google Scholar 

  • Zelditch, M. L., and A. C. Carmichael. 1989. Ontogenetic variation in patterns of developmental and functional integration in skulls of Sigmodon fulviventer. Evolution 43: 814–824.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Klingenberg, C.P. (1996). Multivariate Allometry. In: Marcus, L.F., Corti, M., Loy, A., Naylor, G.J.P., Slice, D.E. (eds) Advances in Morphometrics. NATO ASI Series, vol 284. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9083-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9083-2_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9085-6

  • Online ISBN: 978-1-4757-9083-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics