Skip to main content

Nucleotide Sequences in Nematode Systematics

  • Chapter
Book cover Advances in Molecular Plant Nematology

Part of the book series: NATO ASI Series ((NSSA,volume 268))

Abstract

The addition of nucleotide sequence data to systematics has dramatically altered the study of relationships among organisms. In some respects, it has merely intensified the debate involving congruence between morphological and nonmorphological data sets (Patterson et al., 1993; Swofford, 1991; Hillis, 1987). In other regards, it has shifted the focus of the debate to methods of handling large data sets comprised of nonmorphological characters (Felsenstein, 1988; Hillis and Huelsenbeck, 1992; Simon, 1991; Swofford and Olsen, 1990). Nucleotide sequence alignment, assessments of homology, tree building protocols, and tree optimization and evaluation procedures are all recognized as critical components in contemporary systematic analysis. It is indisputable that molecular methods will have an impact in nematode systematics. Already there is a rapidly accumulating literature in molecular systematics, albeit some of it rather obtuse and difficult to interpret. Some fields, such as mammalian systematics, have vigorously embraced the new technologies. Nematode molecular systematics is in its infancy, with less than a dozen technical papers using nucleotide sequence data to assess relationships among nematodes. Yet it could be argued that molecular systematics will have its greatest impact among the lesser understood taxa, those that have received scant attention due to small size of the organisms and conservation of morphological characters. Molecular systematics can put nematodes on the same footing as better understood organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Avice, J.C., 1994, Molecular Markers, Natural History, and Evolution, Chapman and Hall, New York.

    Book  Google Scholar 

  • Avise, J.C., Helfman, G.S., Saunders, N.C., and Hales, L.S., 1986, Mitochondrial DNA differentiation in North Atlantic eels: Population genetic consequences of an unusual life history pattern, Proc. Natl. Acad. Sci. USA 83:4350.

    Article  PubMed  CAS  Google Scholar 

  • Ball, R.M. Jr., Freeman, S., James, F.C., Bermingham, E., and Avise, J.C., 1988, Phylogeographic population structure of Red-winged Blackbirds assessed by mitochondrial DNA, Proc. Natl. Acad. Sci. USA 85:1558.

    Article  PubMed  CAS  Google Scholar 

  • Beckenbach, K., Smith, M.J., and Webster, J.M., 1992, Taxonomic affinities and intra- and interspecific variation in Bursaphelenchus spp. as determined by polymerase chain reaction, J. Nematol. 24:140.

    PubMed  CAS  Google Scholar 

  • Brooks, D.R., and McLennan, D.A. 1991, Phylogeny, Ecology and Behavior: A Research Program in Comparative Biology, University of Chicago Press, Chicago

    Google Scholar 

  • Brower, A.V.Z., and Boyce, T.M., 1991, Mitochondrial DNA variation in monarch butterflies, Evolution 45:1281.

    Article  Google Scholar 

  • Brown, W.M., Prager, E.M., Wang, A., and Wilson, A.C., 1982, Mitochondrial DNA sequences of primates: Tempo and mode of evolution, J. Mol. Evol. 18:225.

    Article  PubMed  CAS  Google Scholar 

  • Butler, M.H., Wall, S.M., Luehrsen, K.R., Fox, G.E., and Hecht, R.M., 1981, Molecular relationships between closely related strains and species of nematodes, J. Mol. Evol. 18:18.

    Article  PubMed  CAS  Google Scholar 

  • Castagnone-Sereno, P., Potte, C., Uijthof, J., Abad, P., Wajnberg, E., Vanlerberghe-Masutti, F., Bongiovanni, M., and Dalmasso, A., 1993, Phylogenetic relationships between amphimictic and Parthenogenetic nematodes of the genus Meloidogyne as inferred from repetitive DNA analysis, Heredity 70:195.

    Article  CAS  Google Scholar 

  • Doolittle, R.F., ed., 1990, Molecular Evolution: Computer Analysis of Protein and Nucleic Acid Sequences. Methods in Enzymology, Vol. 183, Academic Press, New York.

    Google Scholar 

  • Dutta, S.K., ed., 1986, DNA Systematics. CRC Press, Boca Raton.

    Google Scholar 

  • Felsenstein, J., 1988, Phylogenies from molecular sequences: inferences and reliability, Annu. Rev. Genet. 22:521.

    Article  PubMed  CAS  Google Scholar 

  • Ferris, V.R., Ferris, J.M., and Faghihi, J., 1993, Variation in spacer ribosomal DNA in some cyst-forming species of plant parasitic nematodes, Fundam. Appl. Nematol. 16:177.

    Google Scholar 

  • Fernholm, B., Bremer, K., and Jornvall, H., eds., 1989, The Hierarchy of Life. Molecules and Morphology in Phylogenetic Analysis, Elsevier, Amsterdam.

    Google Scholar 

  • Gillespie, J., 1991, The Causes of Molecular Evolution, Oxford University Press, Oxford.

    Google Scholar 

  • Harris, T.S., Sandall, L.J., and Powers, T.O., 1990, Identification of single Meloidogyne juveniles by polymerase chain reaction amplification of mitochondrial DNA, J. Nematol. 22:518.

    PubMed  CAS  Google Scholar 

  • Harrison, R.G., 1991, Molecular changes at speciation, Annu. Rev. Ecol. Syst. 22:281.

    Article  Google Scholar 

  • Harvey, P.H., and Pagel, M.D., 1991, The Comparative Method in Evolutionary Biology, Oxford University Press, Oxford.

    Google Scholar 

  • Hillis, D.M., 1987, Molecules versus morphological approaches to systematics, Annu. Rev. Ecol. Syst. 18:23.

    Article  Google Scholar 

  • Hillis, D.M., and Huelsenbock, J.P., 1992, Signal, noise, and reliability in molecular phylogenetic analyses, J. Hered. 83:189.

    PubMed  CAS  Google Scholar 

  • Hillis, D.M., and Moritz, C., eds., 1990, Molecular Systematics. Sinauer Associates, Sunderland.

    Google Scholar 

  • Hugall, A., Moritz, C., Stanton, J., and Wolstenholme, D.R., 1994, Low, but strongly structured mitochondrial DNA diversity in root knot nematodes (Meloidogyne), Genetics (in press).

    Google Scholar 

  • Kimura, M., 1980, A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences, J. Mol. Evol. 16:111.

    Article  PubMed  CAS  Google Scholar 

  • Klein, J., Takahata, N., and Ayala, F.J., 1993, MHC polymorphism and human origins, Scientific American Dec. 78.

    Google Scholar 

  • Kocher, T.D., Thomas, W.K., Meyer, A., Edwards, S.V., Paabo, S., Villabianca, F.X., and Wilson, A.C., 1989, Dynamics of mitochondrial DNA evolution in animals: Amplification and sequencing with conserved primers, Proc. Natl. Acad. Sci. USA 86:6196.

    Article  PubMed  CAS  Google Scholar 

  • Mindell, D.P., 1991, Aligning DNA sequences: Homology and phylogenetic weighing, in: “Phylogenetic Analysis of DNA Sequences”, Miyamoto, M.M. and Cracraft, J., eds., Oxford University Press, New York.

    Google Scholar 

  • Mindell, D.P. and Honeycutt, R.L. 1990, Ribosomal RNA in vertebrates: Evolution and phylogenetic applications, Annu. Rev. Ecol. Syst. 21:541.

    Article  Google Scholar 

  • Miyamoto, M.M., and Cracraft, J., eds., 1991, Phylogenetic Analysis of DNA Sequence. Oxford University Press, New York.

    Google Scholar 

  • Nei, M., 1987, Molecular Evolutionary Genetics, Columbia University Press, New York.

    Google Scholar 

  • Novitski, C.E., Brown, S., Chen, R., Corner, A.S., Atkinson, H.S., and McPherson, M.J., 1993, Major Sperm Protein Genes from Globodera rostochiensis, J. Nematol. 25:548.

    CAS  Google Scholar 

  • Mullis, K., Faloona, F., Scharf, S., Saiki, R., Horn, G., and Erlich, H., 1986, Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harbor, Symp. Quant. Biol. 51:263.

    Article  CAS  Google Scholar 

  • Okimoto, R., Macfarlane, J.L., Clary, D.O., and Wolstenholme, D.R., 1992, The mitochondrial genomes of two nematodes, Caenorhabditis elegans and Ascaris suum, Genetics 130:471.

    CAS  Google Scholar 

  • Palumbi, S.R., and Wilson, A.C., 1990, Mitochondrial DNA diversity in the sea urchins Strongylocentrotus purpuratus and S. droebachiensis, Evolution 44:403.

    Article  Google Scholar 

  • Pamilo, P., and Nei, M., 1988, Relationships between gene trees and species trees, Mol. Biol. Evol. 5:568.

    PubMed  CAS  Google Scholar 

  • Patterson, C., ed., 1987, Molecules and Morphology in Evolution: Conflict or Compromise?, Cambridge University Press, Cambridge.

    Google Scholar 

  • Patterson, C., Williams, D.M., and Humphries, C.J., 1993, Congruence between molecular and morphological phylogenies, Annu. Rev. Ecol. Syst. 24:153.

    Article  Google Scholar 

  • Powers, T.O., and Harris, T.S., 1993, A polymerase chain reaction method for identification of five major Meloidogyne species, J. Nematol. 25:1

    PubMed  CAS  Google Scholar 

  • Powers, T.O., Harris, T.S., and Hyman, B.C., 1993, Mitochondrial DNA divergence among Meloidogyne incognita, Romanomermis culicivorax, Ascaris suum, and Caenorhabditis elegans, J. Nematol. 25:563.

    Google Scholar 

  • Quicke, D.L.J., 1993, Principles and Techniques of Contemporary Taxonomy, Blackie Academic and Professional, London.

    Book  Google Scholar 

  • Radice, A.D., Powers, T.O., Sandall, L.J., and Riggs, R.D., 1988, Comparisons of mitochondrial DNA from the sibling species Heterodera glycines and H. schachtii, J. Nematol. 20:443.

    CAS  Google Scholar 

  • Selander, R.K., Clark, A.G., and Whittam, T.S., 1991, Evolution at the Molecular Level, Sinauer Associates, Sunderland.

    Google Scholar 

  • Simon, C., 1991, Molecular systematics at the species boundary: Exploiting conserved and variable regions of the mitochondrial genome of animals via direct sequencing from amplified DNA, in: “Molecular Techniques in Taxonomy”, Hewitt, G.M., Johnson, A.W.B., and Young, J.P.W., eds., Springer-Verlag, Berlin.

    Google Scholar 

  • Soltis, P., Soltis, D., and Doyle, J.J., eds., 1992, Molecular Systematics of Plants, Chapman and Hall, New York.

    Google Scholar 

  • Swofford, D.L., 1991, When are phytogeny estimates from molecular and morhological data incongruent?, in: “Phylogenetic Analysis of DNA Sequences”, Miyamoto, M.M. and Cracraft, J., eds., Oxford Univ. Press, New York.

    Google Scholar 

  • Swofford, D.L., and Olsen, G.L., 1990, Phylogeny reconstruction, in: Molecular Systematics, D.M. Hillis and C. Moritz, eds., Sinauer, Sunderland, Mass.

    Google Scholar 

  • Tajima, F., and Nei, M., 1984, Estimation of evolutionary distance between nucleotide sequences, Mol. Biol. Evol. 1:269.

    PubMed  CAS  Google Scholar 

  • Tamura, K., and Nei, M., 1993, Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees, Mol. Biol. Evol. 10:512.

    PubMed  CAS  Google Scholar 

  • Thomas, W.K. and Wilson, A.C., 1991, Mode and tempo of molecular evolution in the nematode Caenorhabditis: cytochrome oxidase II and calmodulin sequences, Genetics 128:269.

    PubMed  CAS  Google Scholar 

  • Vahidi, H., Curran, J., Nelson, D.W., Webster, J.M., McClure, M.A., and Honda, B.M., 1988, Unusual sequences, homologous to 5 S RNA, in ribosomal DNA repeats of the nematode Meloidogyne arenaria, J. Mol. Evol. 27:222.

    Article  CAS  Google Scholar 

  • Vahidi, H., and Honda, B.M., 1991, Repeats and subrepeats in the intergenic spacer of rDNA from the nematode Meloidogyne arenaria, Mol. Gen. Genet. 227:334.

    CAS  Google Scholar 

  • Vahidi, H., Purac, A., LeBlanc, J.M., and Honda, B.M., 1991, Characterization of potentially functional 5 S rRNA-encoding genes within ribosomal DNA repeats of the nematode Meloidogyne arenaria, Gene 108: 281.

    Article  CAS  Google Scholar 

  • Vrain, T.C., Wakarchuk, D.A., Levesque, A.C., and Hamilton, R.I., 1992, Intraspecific rDNA restriction fragment length polymorphism in the Xiphinema americanum group, Fundam. appl. Nematol. 15:563.

    Google Scholar 

  • Waterman, M.S., Joyce, J., and Eggert, M., 1991, Computer alignment of sequences, in: “Phylogenetic Analysis of DNA Sequences”, Miyamoto, M.M. and Cracraft, J., eds., Oxford University Press, New York.

    Google Scholar 

  • Wilson, A.C., Ochman, H., and Prager, E.M., 1987, Molecular time scale for evolution, Trends Genet. 3:241.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Powers, T.O., Adams, B.J. (1994). Nucleotide Sequences in Nematode Systematics. In: Lamberti, F., De Giorgi, C., Bird, D.M. (eds) Advances in Molecular Plant Nematology. NATO ASI Series, vol 268. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9080-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9080-1_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9082-5

  • Online ISBN: 978-1-4757-9080-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics