Skip to main content

The Antibacterial Activity of Lactoferrin and Neonatal E. coli Infections

A Selective and Critical Review

  • Chapter
Advances in Lactoferrin Research

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 443))

Abstract

In 1960, Montreuil et al.1 among others described a method for isolating and purifying an iron-chelating protein from human milk now known as lactoferrin (Lf). In their discussion they made a suggestion which we are still trying to substantiate: “une activité antibiotique vis-à-vis de certains germes pathogènes pour le Nourrisson”. The suggestion that lactoferrin is antibacterial was based on the seminal paper by Schade & Caroline in 19442. They used raw hen egg white to stabilize a bacteriophage during lyophilization and observed that its host, Salmonella dysenteriae, was inhibited by the egg white; this inhibition could be reversed by the addition of iron. After a suitable ‘incubation time’ of about 20 years, this discovery, by serendipity, became the beginning for all aspects of iron and bacterial infection and immunity, as we now know. In 1961, Hanson3 discovered secretory immunoglobulin A (sIgA) which eventually led to the concept of Mucosal Associated Lymphoid Tissue (MALT)—the gut and lung, mammary, salivary and lacrymal glands, and the genital tract. In addition to sIgA, secretions can also contain other non-antibody protective proteins such as lactoferrin (Lf), lysozyme (LZ), lactoperoxidase (LP) and xanthine oxidase (XO). LP is the enzyme which catalyses the bacterial activity of the lactoperoxidase-thiocyanate-hydrogen peroxide system (LP-system)4.

It aint necessarily so The things that your preacher Is liable to teach yer It aint necessarily so.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Montreuil, J, Tonnelat, J, Mullet, S (1960) Préparation et propriétés de la sidérophiline (lactotransferrine) du lait de femme. Biochim. Biophys. Acta 45: 413–421.

    Google Scholar 

  2. Schade, AL, Caroline, L (1944) Raw hen egg white and the role of iron in growth inhibition of Shigella dvsenteriae, Staphylococcus aureus, Escherichia coli and Saccharomyces cerevisiae. Science 100: 14 — I5.

    Article  PubMed  CAS  Google Scholar 

  3. Hanson, LA (1961) Comparative immunological studies of the immune globulines of human milk and of blood serum. Int. Arch. Allergy Appl. Immunol. 18: 241–267.

    Google Scholar 

  4. Reiter, B, Gram, JD (1967) Bacterial inhibitors in milk and other secretions. Nature 2 I 6: 328–330.

    Article  Google Scholar 

  5. Bullen, JJ, Rogers, HJ. Leigh, L (I972) Iron binding proteins in milk and resistance to Escherichia coli infections in infants. Br. Med. J. I: 69–75.

    Google Scholar 

  6. Masson, PL, Heremans, JF, Prignot, J, Wauters, G (1966) Immunohistochemical localization and bacteriostatic properties of an iron-binding protein from bronchial mucus. Thorax 21: 538–544.

    Article  PubMed  CAS  Google Scholar 

  7. Oram, JD, Reiter, B (1966) Inhibitory substances present in milk and the secretion of the dry udder. Rep. Natl Inst. Res. Dairying, England p. 93.

    Google Scholar 

  8. Stuart. JS, Norell, S, Harrington, JP (1984) Kinetic effect of human lactoferrin on the growth of Escherichia coli 01 11. Int. J. Biochem. 16: 1043–1047.

    Google Scholar 

  9. Valenti, P, Antonini, G, Fanelli, R, Orsi, N, Antonini. E (1982) Antibacterial activity of matrix-bound ovotransferrin. Antimicrob. Agents Chemother. 21: 840–841.

    Google Scholar 

  10. Naidu. SS, Svensson, U, Kishore, AR, Naidu, AS (1993) Relationship between antibacterial activity and purin binding of lactoferrin in Escherichia coli and Salmonella typhimurium. Antimicrob. Agents Chemother. 37: 240–245.

    Google Scholar 

  11. I. Spik. G, Cheron, A, Montreuil, J, Dolby, JM (1978) Bacteriostasis of a milk-sensitive strain of Escherichia coli by immunoglobulins and iron-binding proteins in association. Immunology 35: 663–671.

    Google Scholar 

  12. Ellison Ill, RT, Giehl, TJ, LaForce, FM (1988) Damage to outer membrane of enteric Gram-negative bacteria by lactoferrin and transferrin. Infect. Immun. 56: 274–281.

    Google Scholar 

  13. Arnold, RR, Cole, MF, McGhee, JR (1977) A bacteriocidal effect of human lactoferrin. Science 197: 263 265.

    Google Scholar 

  14. Arnold, RR, Russel, JE, Champion, WJ, Brewer, M, Gauthier, JJ (1982) Bactericidal activity of human lactoferrin. Differentiation from the stasis of iron deprivation. Infect. Immun. 35: 792–799.

    Google Scholar 

  15. Reiter, B (1978) Review of nonspecific antimicrobial factors in colostrum. Ann. Rech. Vet. 3: 205–224.

    Google Scholar 

  16. Lassiter, MO. Newsome, Al, Sams, LD, Arnold, RR (1987) Characterization of lactoferrin interaction with Streptococcus nurtans. J. Dental Res. 66 480–485.

    Google Scholar 

  17. Ilalliwell, B. Gutteridge, JMC (1985) The importance of free radicals and catalytic metal ions in human diseases. Molec. Aspects Med. 8: 89–193.

    Google Scholar 

  18. Perraudin, J-P, Price’s, J-P (1982) Lactoferrin binding to lysozyme-treated Micrococcus hueus. Biochim. Biophys. Acta 718: 42–48.

    Google Scholar 

  19. Susuki, T, Yamauchi, K. Kawase, K, Tornita, M, Kiyosawa, I, Okonogi, S (1989) Collaborative bacteriostatic activity of bovine lactoferrin with lysozyme against Escherichia coli 0111. Agric. Biol. Chem. 53: 1705–1706.

    Google Scholar 

  20. Sojka, WJ (1965) Escherichia soli in domestic animals and poultry. Farnham Royal: Commonwealth Agricultural Bureaux.

    Google Scholar 

  21. Jones, GW. Rutter, JM (1972) Role of the KPH antigen in the pathogenesis of neonatal diarrhea caused by Escherichia coli in piglets. Infect. Immun. 6: 918–927.

    Google Scholar 

  22. Camara. LM, Carbonare, SB, Scaletsky. ICA, da Silva. MLM, Carneiro-Sampaio, MMS (1995) Inhibition of enteropathogenic Escherichia coli (EPEC) adherence to HeLa cells by human colostrum. Detection of specific sIgA related to EPEC outer-membrane proteins. In: Mestecky, J et al. eds Advances in Mucosal Immunology. New York: Plenum Press, 673–676.

    Google Scholar 

  23. Reiter, B (1981) The contribution of milk to resistance to intestinal infection in the newborn. In: Lambert, HP, Wood, CBS, eds Immunological Aspects of Infection in the Fetus and Newborn. New York: Academic Press (Beecham Colloquium) 155–195.

    Google Scholar 

  24. Reiter, R, Brown, T (1976) Inhibition of haemagglutination of red blood cells by K0 and K adhesion using milk fat globule membrane. Proc. Soc. Gen. Microbiol. 3: 109.

    Google Scholar 

  25. Atroshi, F, Alaviuhkola, T, Schild, R, Sandholm, M (1983) Fat globule membrane of sow milk as a target for adhesion of K0 positive Escherichia coli. Comp. Immunol. Microbiol. Infect. Dis. 6: 235–245.

    Google Scholar 

  26. Hanson, LA (1988) Discussion. In: Hanson, LA, ed. Biology of Human Milk (Nestle Nutrition Workshop Series no. 15 ). New York: Raven Press, p. 45.

    Google Scholar 

  27. Guggenhichler, J (1988) Discussion. ibidem, p.157.

    Google Scholar 

  28. Bullen, JJ, Griffiths, E (1987) Iron and Infection, Molecular, Physiological and Clinical Aspects. John Wiley and Sons. Chichester.

    Google Scholar 

  29. Reiter, B. Bromley, A (1975) Defense mechanisms of the udder and their relevance to mastitis control. Int. Dairy Fed. Annu. Bull. no. 85, 210–215.

    Google Scholar 

  30. Stephens. S. Harkness, RA, Cockle, SM (1979) Lactoperoxidase activity in guinea-pig milk and saliva: correlation in milk of lactoperoxidase with bactericidal activity against Escherichia coli. Br. J. Pathol. 60: 752.. 258.

    Google Scholar 

  31. Antonini, E, Orsi, N, Valenti, P (1977) [Effect of transferrin on the pathogenicity of Enterobacteriaceae.] Giornale di Malattie Infettive e Parassitarie 29: 481–489.

    Google Scholar 

  32. Widdowson, EM, Colombo, VE, Artavanis, CA (1976) Changes in the intestinal tract organs of pigs in response to feeding for the first 24 hours after birth. 2. The digestive tract. Biol. Neonate 28: 272–281.

    Google Scholar 

  33. Teraguchi, S, Shin, K, Ozawa, K, Nakamura, S, Fukuwatari, Y, Tsuyuki, S, Namihira, H, Shimamura, S (1995) Bacteriostatic effect of orally administered bovine lactoferrin on proliferation of Clostridium species in the gut of mice fed bovine milk. Appl. Environ. Microbiol. 61: 501–506.

    Google Scholar 

  34. Reiter, B, Fulford, RJ, Marshall, VM, Yarrow, N, Ducker, MJ (1981) An evaluation of the growth promoting effect of the lactoperoxidase system in newborn calves. Anim. Prod. 32: 297–306.

    Google Scholar 

  35. Prieels, J-P, Delahaut, P, Jacquemin E, Kaeckenbeeck, A, (1989). Application du système lactopéroxydase au traitement de la diarrhée colibacillaire chez les veaux. Ann. Med. Vet, 133: 143–150

    Google Scholar 

  36. Mata, LJ, Urrutia, JJ (1977) Infections and infectious diseases in a malnourished population: a long-term prospective field study. In: Hambræus, L, Hanson, LA and McFarlane, H.. eds. Food and Immunology. Almqvist Wiksell International, 42–58.

    Google Scholar 

  37. Hilpert, H, Gerber, H, Amster, H, Pahud, JJ, Ballabriga, A, Arcalis, L. Farriaux, F, de Peyer, E, Nussle, D (1977) Bovine milk immunoglobulins (Ig), their possible utilization in industrially prepared infants’ milk formulae. In: Hambræus, L, Hanson, LA McFarlane, H, eds. Food and Immunology. Almqvist Wiksell

    Google Scholar 

  38. Hilpert, H (1984) Preparation of a milk immunoglobulin concentrate from cow’s milk. In: Williams, AF, Baum, JD, eds. Human Milk Banking (Nestle Nutrition Workshop Series vol. 5). Raven Press, 17–29.

    Google Scholar 

  39. Spik, G, Jorieux, S, Mazurier, J, Navarro, J, Romond, C, Montreuil, J (1984) Ibid. 133–145.

    Google Scholar 

  40. Bullen, CL (1977) The role of pH and buffering capacity of faeces in the control of the Gram-negative intestinal flora. In: Hambræus, L, Hanson, LA McFarlane, H. Food and Immunology. Almqvist Wiksell, 42–58.

    Google Scholar 

  41. Hambræus, L, Forsum, E, Lönnerdal, B (1977) Nutritional aspects of breast milk versus cow’s milk formula. Ibid.

    Google Scholar 

  42. Wharton, BA, Balmer, SE, Scott, PH (1994) Faecal flora in the newborn: effect of lactoferrin and related nutrients. In: Hutchens, TW, Rumball, SV Lönnerdal, B, eds. Lactoferrin Structure and Function (Advances in Experimental Medicine Biology vol. 357). Plenum Press, 91–99.

    Chapter  Google Scholar 

  43. Roberts, AK, van Biervliet, JP, Harzer, G (1985) Supplementation of an adapted formula with bovine lactoferrin. Effect on the infant faecal flora. In: Schaub, J, ed. Composition and Physiological Properties of Human Milk. Elsevier Science Publishers, 259–271.

    Google Scholar 

  44. Corda, R, Biddan, P, Corrias, A, Puxeddu, E (1983) The conalbumin in the therapeutic treatment of acute enteritis in the infant. J. Tissue React v 117–121.

    Google Scholar 

  45. Diadal, NV, (1986) Ontwikkeling van een babyvoeding, ungerjkt met immunfactoren. Rapport, EEG Verordening 1150/86 (Kontrakt: 1150–39. 2 ).

    Google Scholar 

  46. Reiter, B, Perraudin, J-P (1990) Lactoperoxidase: biological functions. In: J Everse, EK Everse, MB Grisham, eds Peroxidases in Chemistry and Biology, vol 1. CRC Press, Boca Raton, FL, 143–180

    Google Scholar 

  47. Courtois, Ph, Abbeele, V, Amrani, N, Pourtois, M (1995) Streptococcus languis survival rates in the presence of lactoperoxidase-produced OSCN-and OF Med. Sci. Res. 23: 195–197.

    Google Scholar 

  48. Ellison, RT III (1994) The effects of lactoferrin on Gram-negative bacteria. In TW Hutchens, S V Rumball, B Lönnerdal, eds. Lactoferrin Structure and Function (Advances in Experimental Medicine Biology vol. 357), Plenum Press, 71–90.

    Chapter  Google Scholar 

  49. Reiter, B, Marshall, V„ Björck, L, Rosen, C. (1976) Nonspecific bactericidal activity of the lactoperoxidase-thiocyanate-hydrogen peroxide system of milk against Escherichia coil and some Gram-negative pathogens. Infect Immun. 13: 800–807

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Reiter, B., Perraudin, JP. (1998). The Antibacterial Activity of Lactoferrin and Neonatal E. coli Infections. In: Spik, G., Legrand, D., Mazurier, J., Pierce, A., Perraudin, JP. (eds) Advances in Lactoferrin Research. Advances in Experimental Medicine and Biology, vol 443. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9068-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9068-9_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9070-2

  • Online ISBN: 978-1-4757-9068-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics