Skip to main content

Mechanics of a Composite Structure of GFRP Insulators and Superconductors with a GAP

  • Chapter
  • 24 Accesses

Part of the book series: Advances in Cryogenic Engineering ((ACRE,volume 42))

Abstract

Superconducting coils in large scale magnet applications such as the Large Helical Device (LHD) are subjected to large electromagnetic force at the interfaces between conductors and electrical insulators. The insulators do not always contact the superconductor surfaces completely. This may cause a reduction of coil rigidity. Nonlinear behavior was observed in the compressive load-displacement curves in some experiments of coil packs. The nonlinear curves were found to be well fitted by an exponential function. We considered this nonlinearity as a surface contact problem and devised some analytical models to evaluate the rigidity reduction in terms of gap length. The results of this analysis also support the exponential function.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O. Motojima, K. Akaishi, K. Fujii, S. Fujiwaka, S. Imagawa, H. Ji, H. Kanako, S. Kitagawa, Y. Kubota, K. Matsuoka, T. Mito, S. Morimoto, A. Nishimura, K. Nishimura, N. Noda, I. Ohtake, N. Ohyabu, S. Okamura, A. Sagara, M. Sakamoto, S. Satoh, T. Satow, K. Takahata, H. Tamura, S. Tanahashi, T. Tsuzuki, S. Yamada, H. Yamada, K. Yamazaki, N. Yanagi, H. Yonezu, J. Yamamoto, M. Fujiwara and A. Iiyoshi, Physics and engineering design studies on the Large Helical Device, Fusion Engineering and Design, 20: 3 (1993).

    Article  CAS  Google Scholar 

  2. J. Yamamoto, T. Mito, O. Motojima, K. Takahata, N. Yanagi, S. Yamada, A. Nishimura, M. Sakamoto, H. Tamura, S. Imagawa, S. Satow, M. Takeo, M. Fujiwara and A. Iiyoshi, A. Research and Development of Superconductors and Superconducting Coils for the Large Helical Device, Fusion Engineering and Design, 20: 139 (1993).

    Article  CAS  Google Scholar 

  3. A. Nishimura, H. Tamura, T. Mito, Rigidity Test of a Superconducting Coil at 4.2 K Simulated for the Helical Coil on the LHD Program, Fusion Engineering and Design, 20: 211 (1993).

    Article  CAS  Google Scholar 

  4. A. Nishimura, H. Tamura, S. Imagawa, T. Mito, K. Takahata, J. Yamamoto, S. Mizumaki, H. Ogata, H. Takano, Experimental Rigidity Evaluation of Conduit Pack for Forced-Flow Superconducting Coil, Advances in Cryogenic Engineering 40: 1413 (1994).

    CAS  Google Scholar 

  5. Y. Shindo, Y. Takagi, H. Tamura, A. Nishimura, J. Yamamoto and O. Motojima, Mechanical Behavior and Compressive Rigidity of Superconducting Coil Pack for Large Helical Device, Journal of the Cryogenic Society of Japan, Vol. 29, No. 2: 16 (1994).

    Google Scholar 

  6. H. Tamura, Y. Takagi, Y. Shindo, A. Nishimura, T. Mito, J. Yamamoto, O. Motojima and LHD group, Analysis of Mechanical Rigidity Simulates Superconducting Coil Pack at Low Temperature, Advances in Cryogenic Engineering 40: 1421 (1994).

    CAS  Google Scholar 

  7. S. Imagawa, N. Yanagi, S. Yamaguchi, T. Satow, J. Yamamoto, O. Motojima and LHD group, Construction of Helical Coil Winding Machine for LHD and On-site Winding, Proceedings of MT-14 B10 (1995).

    Google Scholar 

  8. Y. Tsukazaki, S. Nishijima, K. Ohta, T. Okada and K. Asano, Mechanical Properties of High-Glass-Content GFRP Laminate at Low Tempetature, Journal of the Cryogenic Society of Japan, Vol. 30, No. 4: 26 (1994).

    Google Scholar 

  9. R. M. Jones, “Mechanics of Composite Materials,” McGraw-Hill, New York (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tamura, H., Imagawa, S., Nishimura, A., Yamamoto, J., Shindo, Y. (1996). Mechanics of a Composite Structure of GFRP Insulators and Superconductors with a GAP. In: Summers, L.T. (eds) Advances in Cryogenic Engineering Materials . Advances in Cryogenic Engineering Materials , vol 42. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9059-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9059-7_26

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9061-0

  • Online ISBN: 978-1-4757-9059-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics