Skip to main content

Applicability of a Pitch Carbon FRP Thermal Shield Under Neutron Irradiation — a Theoretical Estimate

  • Chapter
Advances in Cryogenic Engineering Materials

Part of the book series: Advances in Cryogenic Engineering ((ACRE,volume 42))

  • 43 Accesses

Abstract

The applicability of pitch-type carbon for thermal shielding in fusion devices was studied by estimating the degradation of its a-axis thermal conductivity on neutron irradiation at cryogenic temperatures. This was done by the use of, in part, the experimental data on unirradiated pitch carbon FRP specimens from which the pre-irradiation phonon relaxation time parameters were determined. The post-irradiation parameters were estimated by considering Frenkel pair formation due to irradiation with neutrons of an energy spectrum equivalent to that in the moderator of a fission reactor. The effective relaxation time was then determined by using all the parameters and the new thermal conductivity with its temperature dependency was calculated. From this analysis it is estimated that a pitch carbon based thermal shield would maintain a thermal conductivity superior to that of stainless steel for neutron irradiations up to 3×1018n/cm2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E.M.W. Leung et al, Adv. in Cryogenic Eng. Vol. 25 (1979) 489

    Google Scholar 

  2. T. Okada, B.M.S. Rugaiganisa and S. Nishijima, Cryogenics Vol. 32, ICMC Supplement (1992) 30

    Google Scholar 

  3. B.M.S. Rugaiganisa, S. Nishijima, T. Okada, K. Nojimaand K. Asano, Adv. in Cryogenic Eng. (Materials) Vol. 40 (1994) 993

    CAS  Google Scholar 

  4. B. Dreyfus and R. Maynard, journal de Physique (France) 28 (1967) 955

    Article  CAS  Google Scholar 

  5. T. Nihira and T. Iwata, “Point Defects and Defect Interaction in Metals”, University of Tokyo Press, Tokyo (1982), p.236

    Google Scholar 

  6. C.A. Klein and M.G. Holland, Physical Review 136 (1964)a575

    Article  CAS  Google Scholar 

  7. LB. Mason and R.H. Knibbs, A.E.R.E. 3937

    Google Scholar 

  8. J.M. Ziman, “Electrons and Phonons”, Oxford University Press, London (1960), p.257

    Google Scholar 

  9. K. Komatsu, J. Phys. Soc. Japan 10 (1955) 346

    Article  CAS  Google Scholar 

  10. A. de Combarieu, journal de Physique (Prance) 28 (1967) 951

    Article  Google Scholar 

  11. B.T. Kelly, “Physics of Graphite”, Applied Science Publishers, London (1981) p.222

    Google Scholar 

  12. P.A. Carruthers, Rev. Mod. Phys. 33 (1961) 92

    Article  CAS  Google Scholar 

  13. K. Komatsu and T. Nagamiya J. Phys. Soc. Japan Vol. 6 No. 6 (1951) 438

    Article  CAS  Google Scholar 

  14. C. Herring, Physical Review 95 (1954)954

    Article  CAS  Google Scholar 

  15. T. Nihira and T. Iwata, J. Phys. Soc. Japan Vol. 49 No. 5 (1980) 1916

    Article  CAS  Google Scholar 

  16. T. Okada et al, “Radiation Effects and Tritium Technology for Fusion Reactors”, CONF-750989, Vol. II (1976) p.436

    Google Scholar 

  17. W. Schilling et al, “Proc. of the Int. Conf. on Vacancies and Interstitials in Metals”, Zurich (1968) p.255

    Google Scholar 

  18. G.M. McCracken and S. Blow, The shielding of superconducting magnets in a fusion reactor, CLM-R120 (1972)

    Google Scholar 

  19. W. Marshall (editor) “Reactor Technology”, Oxford University Press, 1983

    Google Scholar 

  20. S. Igarashi et al, “Japanese Evaluated Nuclear Data Library, Version 1 (JENDL-1)”, JAERI 1261 (1979)

    Google Scholar 

  21. B.T Kelly, “Irradiation Damage to Solids”, Pergamon Press, N.Y. (1966) p.13

    Google Scholar 

  22. T. Iwata and T. Nihira, J. Phys. Soc. Japan Vol. 31 No. 6 (1971) 1761

    Article  CAS  Google Scholar 

  23. S. Satoh et al, Fusion Engineering Design vol. 20 (1993) 129

    Article  CAS  Google Scholar 

  24. W. Maurer, “Neutron Irradiation Effects on Superconducting and Stabilizing Materials for Fusion Magnets, KfK 3733”, Kernforschungszentrum Karlsruhe Gmbh, (1984) p.11

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rugaiganisa, B.M.S., Nishijima, S., Okada, T. (1996). Applicability of a Pitch Carbon FRP Thermal Shield Under Neutron Irradiation — a Theoretical Estimate. In: Summers, L.T. (eds) Advances in Cryogenic Engineering Materials . Advances in Cryogenic Engineering Materials , vol 42. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9059-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9059-7_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9061-0

  • Online ISBN: 978-1-4757-9059-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics