Skip to main content

Long-Crack Fatigue Thresholds and Short Crack Simulation at Liquid Helium Temperature

  • Chapter
Materials

Part of the book series: Advances in Cryogenic Engineering ((ACRE,volume 38))

Abstract

A short crack simulation (SCS) test is used to characterize the near—threshold fatigue crack growth behavior of stainless steels at 4 K. The test methodology holds the maximum stress intensity factor constant while increasing the minimum stress intensity factor, thus raising the stress ratio from 0.1 at the start to about 0.8 at the end of the test. The resulting fatigue crack growth rate measurements are unaffected by crack closure, and the intrinsic threshold is directly obtained without a correction factor. Merits of the test procedure are described.

Contribution of NIST, not subject to copyright.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.K. Liaw and W.A. Logsdon, Fatigue Crack Growth Threshold at Cryogenic Temperatures: A Review, Eng. Fract. Mech. 22:585–594 (1985).

    Article  Google Scholar 

  2. R.L. Tobler, Near-threshold Fatigue Crack Growth Behavior of AISI 316 Stainless Steel, Adv. Cryo. Eng. Maters. 32:321–327 (1986).

    Article  CAS  Google Scholar 

  3. R.L. Tobler and Y.W. Cheng, Automatic Near-threshold Fatigue Crack Growth Rate Measurements at Liquid Helium Temperature, Int. J. Fat. 7:191–197 (1985).

    Article  Google Scholar 

  4. Z. Mei, J.W. Chan, and J.W. Morris, Jr., The Effect of Temperature on Fatigue Crack Propagation in 310 Austenitic Stainless Steel, Adv. Cryo. Eng. Maters. 36A:1241–1247 (1990).

    CAS  Google Scholar 

  5. Z. Mei and J.W. Morris, Jr., Influence of Deformation Induced Martensite on the Fatigue Crack Propagation in 304-Type Steels, Metall. Trans. 21A: 3137–3152 (1990).

    Article  Google Scholar 

  6. H. Doker, V. Bachman, and G. Marci, A Comparison of Different Methods of Determination of the Threshold for Fatigue Crack Propagation, in: “Fatigue Thresholds”, J. Backlund, A. Blom, and C.J. Beevers, eds., EMAS Ltd., United Kingdom, 45 (1982).

    Google Scholar 

  7. W.A. Herman, A Reevaluation of Fatigue Threshold Test Methods, in: “Fatigue 87”, EMAS, Ltd., United Kingdom, 2:819 (1987).

    Google Scholar 

  8. W.A. Herman, R.W. Hertzberg, and R. Jaccard, A Simplified Laboratory Approach for the Prediction of Short Crack Behavior, Fat. Fract. Eng. Maters. Struct. 11:303 (1988).

    Article  Google Scholar 

  9. A. Bussiba, R.L. Tobler, and J. Berger, Superconductor Conduits: Fatigue Crack Growth Rate and Near-Threshold Behavior of Three Alloys, this volume.

    Google Scholar 

  10. S. Suresh and R.O. Ritchie, in: Fatigue Crack Growth Threshold: Concepts, D.L. Davidson and S. Suresh, eds., TMS-AIME Warrendale, PA, 227–261 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tobler, R.L., Berger, J.R., Bussiba, A. (1992). Long-Crack Fatigue Thresholds and Short Crack Simulation at Liquid Helium Temperature. In: Fickett, F.R., Reed, R.P. (eds) Materials. Advances in Cryogenic Engineering, vol 38. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9050-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9050-4_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9052-8

  • Online ISBN: 978-1-4757-9050-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics