Skip to main content

Development of a Fiber Optic Sensor for Detection of General Anesthetics and Other Small Organic Molecules

  • Chapter
Advanced Methods of Pharmacokinetic and Pharmacodynamic Systems Analysis

Abstract

We have demonstrated a fiber optic sensor for general anesthetics and other small organic molecules based on the sensitivity of the phase transitions of phospholipids to the presence of such molecules. An aqueous dispersion of phospholipids that exhibit a phase transition near the desired operating temperature is used as a transducing element at the end of two optical fibers. Agarose gel is used to immobilize liposomes labeled with a fluorescent dye sensitive to the phase state of the bilayer in which it is embedded. The ratio of the fluorescence intensity at two wavelengths exhibits a nearly linear dependance on clinically relevant concentrations of volatile anesthetics over a physiological range of temperatures. The probe has been tested in both gas and liquid phases, and should operate in blood and tissue, allowing development of a practical device for rapid in vivo monitoring of general anesthetics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. D. Miller (Ed.) Anesthesia, Churchill Livingstone, 1981.

    Google Scholar 

  2. O. S. Wolfbeis and H. E. Posch. Fiber optical fluorosensor for determination of halothane and/or oxygen. Anal. Chem. 57:2556–2561 (1985).

    Article  CAS  Google Scholar 

  3. M. G. Drexhage and C. T. Moynihan. Infrared optical fibers. Sci. Am. 11:110–116 (1988).

    Article  Google Scholar 

  4. H. E. Posch, O. S. Wolfbeis, and J. Pusterhofer. Optical and fibre-optic sensors for vapours of polar solvents. Talanta 35(2):89–94 (1988).

    Article  PubMed  CAS  Google Scholar 

  5. S. Merlo and P. Yager. Optical method for monitoring the concentration of general anesthetics and other small organic molecules-An example of phase transition sensing. Anal. Chem. 62:2728–2735 (1990).

    Article  PubMed  CAS  Google Scholar 

  6. S. Merlo, L. W. Burgess, and P. Yager. Sensor Actuator A21-A23, 1150–1154 (1990).

    Article  Google Scholar 

  7. P. N. Yi and R. C. MacDonald. Temperature dependence of optical properties of aqueous dispersions of phosphatidylcholine. Chem. Phys. Lipids 11:114–134 (1973).

    Article  Google Scholar 

  8. T. J. J. Blanck. A simple closed system for performing biochemical experiments at clinical concentrations of volatile anesthetics. Anesth. Analg. 60(6):435–436 (1981).

    PubMed  CAS  Google Scholar 

  9. P. Yager and W. L. Peticolas. The kinetics of the main phase transitions of aqueous dispersions of phospholipids induced by pressure jump and monitored by Raman spectroscopy. Biochim. Biophys. Acta 688:775–785 (1982).

    Article  PubMed  CAS  Google Scholar 

  10. S. Abrams and P. Yager. Manuscript in preparation.

    Google Scholar 

  11. A. S. Janoff and K. W. Miller. A critical assessment of the lipid theories of general anaesthetic action. In D. Chapman (ed.), Biol. Membr., Academic Press, London, 1982, pp. 417–477.

    Google Scholar 

  12. E. S. Rowe. The effects of ethanol on the thermotropic properties of dipalmitoylphosphatidyl choline. Mol. Pharmacol. 22:133–139 (1982).

    PubMed  CAS  Google Scholar 

  13. E. S. Rowe. Lipid chain length and temperature dependence of ethanol-phosphatidylcholine interactions. Biochemistry 22(14):3299–3305 (1983).

    Article  CAS  Google Scholar 

  14. E. S. Rowe. Thermodynamic reversibility of phase transitions. Specific effects of alcohols on phosphatidylcholines. Biochim. Biophys. Acta 813:321–330 (1985).

    Article  PubMed  CAS  Google Scholar 

  15. U. J. Krull, C. Bloore, and G. Gumbs. Supported chemoreceptive lipid membrane transduction by fluorescence modulation: the basis of an intrinsic fibre-optic biosensor. Analyst 111(2):259–261 (1986).

    Article  CAS  Google Scholar 

  16. U. J. Krull, R. S. Brown, R. F. DeBono, and B. D. Hougham. Towards a fluorescent chemorecep-tive lipid membrane-based optode. Talanta 35(2):129–137 (1988).

    Article  PubMed  CAS  Google Scholar 

  17. B. P. H. Schaffar and O. S. Wolfbeis. New optical chemical sensors based on the Langmuir-Blodgett technique. SPIE Proc, 1988, pp. 990-18.

    Google Scholar 

  18. B. P. H. Schaffar, O. S. Wolfbeis, and A. Leitner. Optical sensors. Part 23. Effect of Langmuir-Blodgett layer composition on the response of ion-selective optrodes for potassium, based on the fluorimetric measurement of membrane potential. Analyst 113:693–697 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Merlo, S., Yager, P., Burgess, L.W. (1991). Development of a Fiber Optic Sensor for Detection of General Anesthetics and Other Small Organic Molecules. In: D’Argenio, D.Z. (eds) Advanced Methods of Pharmacokinetic and Pharmacodynamic Systems Analysis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9021-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9021-4_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9023-8

  • Online ISBN: 978-1-4757-9021-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics