Skip to main content

Surface Dependent Emission of Low Energy Electrons (Exoemission) from Apatite Samples

  • Chapter
Adsorption on and Surface Chemistry of Hydroxyapatite
  • 299 Accesses

Abstract

Exoemission (EE) phenomena, grouped collectively under the title “Kramer effect” include non-isothermally stimulated relaxation of irradiation-induced perturbations of crystalline lattices known as Thermally Stimulated Exoemission (TSEE). Liberated electrons may originate from metastable excited states via the conduction band (volume effect) or from phase changes of surface adsorption species (surface effect). However, in all cases, changes in the surface state may modify the emission. This paper presents TSEE observed in apatites using an open-window Geiger counter. In a “model” series, emission maxima common to FAp’s of synthetic mineral and biological origins demonstrate surface and volume dependent emission within the series. Similar emission characteristics observed from biological apatites of differing origins indicates that the defects responsible are intrinsic to the apatite lattice and at least partially independent of chemical substitutions. Since electron availability is of fundamental importance to biological hard tissue reactivity, the potential of exoemission as an adjunct to other surface analysis techniques is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Physico-chemie et Crystallographie des apatites d’interet biologique“. Colloques Internationaux CNRS No 230 Paris France (1975).

    Google Scholar 

  2. D. Langdon, E. Dykes and R.W. Fearnhead, Defects, diffusion and dissolution in biological and synthetic apatite. Pages 381–388 (1973) (Ref. 1).

    Google Scholar 

  3. P.D. Johnson, Dichroic color centres in calcium fluorophosphate, J. Appl. Phys. 32: 127 (1961).

    Article  CAS  Google Scholar 

  4. E.F. Apple, Observations on the formation of color centres in calcium halophosphates, J. Electrochem. Soc. 110: 374 (1963).

    Article  CAS  Google Scholar 

  5. R.K. Swank, Colour centres in X-irradiated halophosphate crystals, Phys. Rev. 135 (lA): A266 (1964).

    Article  Google Scholar 

  6. J.E. Davies, Preliminary results of the exoelectron properties of apatites, 5th Int. Symp. on Exoelectron Emission and Dosimetry, Zvikov, Czech.: 203 (1976).

    Google Scholar 

  7. P.D. Johnson, Some optical properties of powder and crystal halophosphate phosphors, J. Electrochem. Soc. 108: 159 (1960).

    Article  Google Scholar 

  8. A. Boyde, Cutting teeth in the SEM, Scanning 1: 157 (1978).

    Article  Google Scholar 

  9. D. Spitzer and J.J. Ten Bosch, The absorption and scattering light in bovine and human dental enamel, Calc. Tiss. Res. 17: 129 (1975).

    Article  CAS  Google Scholar 

  10. J. Behari, S.K. Guha and P.N. Agarwal, Absorption spectra in bone, Calcif. Tiss. Res. 23: 113 (1977)

    Article  CAS  Google Scholar 

  11. R.O. Becker and F.M. Brown, Photoelectric effects in human bone, Nature (Lond.) 206; 1325 (1965).

    Article  CAS  Google Scholar 

  12. P. Braunlich (Ed), “Thermally Stimulated Relaxation in Solids”, Topics in Applied Physics Vol 37, Springer-Verlag, Berlin (1979).

    Google Scholar 

  13. R. Chen and Y. Kirsh, “Analysis of Thermally Stimulated Processes”, Pergamon Press, Oxford (1981).

    Google Scholar 

  14. C.J. Maletskos, Thermoluminescence of bone, MIT Annual Report No. MIT 652–1: 95 (1965).

    Google Scholar 

  15. J. Kastner, R. Hukkoo and B.G. Oltman, Thermoluminescence in bone, Argonne Nat. Lab; Rad. Phys. Div. Annual Report: 30 (1965).

    Google Scholar 

  16. F.L. Bordell and J. Kastner, Thermoluminescence in bone and bone-like materials, Argonne Nat. Lab; Rad. Phys. Div. Annual Report No. ANL-7489, Biology and Medicine, July 1967-June 1968.

    Google Scholar 

  17. D.G. Willhoit and A.D. Poland, Thermoluminescent characteristics of irradiated enamel and dentine, Health Phys. 15: 91 (1968).

    CAS  Google Scholar 

  18. M. Jasinska and T. Niewiadomski, Thermoluminescence of biological materials, Nature (Lond.) 227: 1159 (1970).

    Article  CAS  Google Scholar 

  19. C. Christodoulides, Problems in TL dating bone, Proc. 8th Symp. Archeometry and Archeological Prospecting (1971)

    Google Scholar 

  20. C. Christodoulides, Thermoluminescent dating of materials of extraterrestial or biological origin, Ph.D. Thesis, University of Birmingham (1972).

    Google Scholar 

  21. C. Christodoulides and J.H. Fremlin, TL of biological materials, Nature 232: 257 (1971).

    Article  CAS  Google Scholar 

  22. H.S.T. Driver, The preparation of thin slices of bone and shell for thermoluminescence, Pact 3: 290 (1979).

    CAS  Google Scholar 

  23. L. Benko and L. Koszorus, Thermoluminescence dating of dental enamel, Nuc. Inst. and Meth. 175: 227 (1980).

    Article  CAS  Google Scholar 

  24. A.G. Wintle, Anomalous fading of thermoluminescence in mineral samples, Nature 245: 143 (1973).

    Article  CAS  Google Scholar 

  25. I.K. Bailiff, Use of phototransfer for the anomalous fading of thermoluminescence, Nature 264: 531 (1976).

    Article  CAS  Google Scholar 

  26. K.S.V. Nambi, Influence of rare earth impurities on TL characteristics, Pact 3: 298 (1979).

    CAS  Google Scholar 

  27. J.E. Vaz, Effects of natural radioactivity on the thermoluminescence of apatite crystals at Cerro del Mercado, Mexico, Modern Geology 7; 171 (1980).

    CAS  Google Scholar 

  28. J. Alves, J.E. Davies and S.A. Durrani, Thermoluminescence of fluorapatites and other mineral apatites: high-temperature emission and the effects of radiation damage, Proc. 3rd Int. Symp. on TL and ESR dating Elsinore, Denmark 26–31 July 1982 to be published in Pact 3: July 1983.

    Google Scholar 

  29. L. Suchow, Studies of color centres produced in apatite halophosphates by shortwave ultraviolet radiation. J. Electrochem. Soc. 108: 847 (1961).

    Article  CAS  Google Scholar 

  30. V.V. Ratnam, R. Jayaprakash and N.P. Daw, Thermoluminescence and thermoluminescence spectra of synthetic fluorapatite. J. Luminescence 21: 417 (1980).

    Article  CAS  Google Scholar 

  31. D. Lapraz, A. Baumer and P. Iacconi, On the thermoluminescence properties of hydroxyapatie Ca5(PO4)30H, Phys. Stat. Sol. (a) 54: 605 (1979).

    Article  CAS  Google Scholar 

  32. S. Kolberg, S. Prydz and S. Dahm, Thermally stimulated luminescence in dental hard tissue and bone, Calc. Tiss. Res. 17: 9 (1974).

    Article  CAS  Google Scholar 

  33. M.R. Chapman, A.G. Miller and T.G. Stoebe, Thermoluminescence in hydroxyapatite, Med. Phys. 6 (6): 494 (1979).

    Article  CAS  Google Scholar 

  34. H.S.T. Driver, personal communication.

    Google Scholar 

  35. Ist Int. Symp. on Exoelectron Emission, Innsbruc, Austria, Acta. Phys. Aust. 10: 313 (1975).

    Google Scholar 

  36. J. Kramer, “Der Metallische Zustand”, Vanderhoek and Ruprecht, Gottingen (1950).

    Google Scholar 

  37. J. Kramer, Anwendung der Exoelectronen, Acta. Phys. Aust. 10: 392 (1957).

    CAS  Google Scholar 

  38. H. Glafeke, “Exoemission” Chapter 5 in Ref (12).

    Google Scholar 

  39. G. Holzapfel and R. Nink, Zum ausseren Photoeffect on Electronen-haftzentren in kristallinen Festkorpern (Optisch stimulierte Exoelektronenemission - OSEE) P.T.B. - Mitt. 83: 207 (1977).

    Google Scholar 

  40. A. Bohun, The physics of exoelectron emission of ionic crystals, Proc. 3rd Int. Symp. on Exoelectrons, Braunschweig 3–12 July (1970).

    Google Scholar 

  41. G. Holzapfel, The evolution of volume concepts to describe exoelectron emission, 5th Int. Symp. Exoelectron Emission and Dosimetry Zvikov, Czech: 19 (1976).

    Google Scholar 

  42. A. Scharmann and W. Kriegseis, Influence of surface parameters on exoelectron emission, 5th Int. Symp. Exoelectron Emission and Dosimetry Zvikov, Czech: 5 (1976)

    Google Scholar 

  43. L.I. Samuelsson, Mechanism for exoelectron emission mainly from LiF, Acta Radiabgica suppl. 359: 1 (1979).

    CAS  Google Scholar 

  44. I.V. Krylova, Exoemission and the physico-chemistry of the surface - recent development, Proc. VIth Int. Symp. Exoelectron Emission and Applications, Ahrenshoop G.D.R.: 80 (1979)

    Google Scholar 

  45. L.G. Petersson, G. Frostell and A. Lodding, Secondary ion microanalysis of fluorine in apatites of biological interest. Z: Naturforsch 29: 417 (1974).

    CAS  Google Scholar 

  46. G. Holzapfel, Zur exoelektronen-emission (Kramer-effekt) von berylliumoxid, Thesis, Technische Universitat Berlin (1968).

    Google Scholar 

  47. M. Petel, Recherches sur la dosimetrie par emissions electroniques stimulees, Thesis, Univ. Paul. Sabatier, Toulouse (No 318 ) (1976).

    Google Scholar 

  48. J.E. Davies and P. Ramsay, A microcomputer-controlled apparatus for simultaneous measurement of exoelectron emission and thermoluminescence, Proc. VIIth Int. Symp. on Exoelectron Emission and Applications Strasbourg, France, March 1983, to be published Rad. Proc. Dos. 4: (1983).

    Google Scholar 

  49. R. Nink and G. Holzapfel, Selective electron emission from f-centres in CsCl. J. de Phys. 3: 19 (1973)

    Article  Google Scholar 

  50. I.V. Krylova, The physico-chemical nature of exoelectron emission. 4th Int. Symp. Exoelectron Emission and Dosimetry Liblice Czech: 145 (1973).

    Google Scholar 

  51. D.M. Todor, “Thermal Analysis of Minerals”, Abacus Press (1976).

    Google Scholar 

  52. D.W. Holcomb and R.A. Young, Thermal decomposition of human tooth enamel, Calc. Tiss. Int. 31: 189 (1980).

    Article  CAS  Google Scholar 

  53. F.M. Ryan, R.C. Ohlmann, J. Murphy, R. Mazelsky, G.R. Wagner and R.W. Warren, Optical properties of divalent manganese in calcium fluorophosphate, Phys. Rev. B2 (7): 2341 (1970).

    Article  Google Scholar 

  54. J. Alves, Ph.D. thesis, in preparation.

    Google Scholar 

  55. J.E. Davies, Exoelectron spectra of apatites of synthetic, mineral and biological orgin, Proc. VIth Int. Symp. Exoelectron Emission and Applications, Ahrenshoop G.D.R. (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer Science+Business Media New York

About this chapter

Cite this chapter

Davies, J.E. (1984). Surface Dependent Emission of Low Energy Electrons (Exoemission) from Apatite Samples. In: Misra, D.N. (eds) Adsorption on and Surface Chemistry of Hydroxyapatite. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9012-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9012-2_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9014-6

  • Online ISBN: 978-1-4757-9012-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics