Skip to main content

New NMR Methods for the Study of Hydroxyapatite Surfaces

  • Chapter

Abstract

Improved surface-characterization techniques are needed to study the adsorption of molecules and ions from aqueous solutions onto microcrystals of the biological mineral hydroxyapatite, the prime constituent of bone and teeth. The continuing development of techniques for obtaining high-resolution nuclear magnetic resonance (NMR) spectra from solids indicates that NMR could provide a valuable spectroscopic characterization of hydroxyapatite surfaces. We report here the successful application of new NMR techniques to two areas: (1) the adsorption onto the surface of hydroxyapatite of diphosphonates, used both as inhibitors of biological mineralization and as bone-scanning agents; (2) the reactions of hydroxyapatite with fluoride ion, which are important in the anti-caries benefits provided through fluoridation of dental enamel.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. M. Duncan and C. Dybowski, Chemisorption and surfaces studied by nuclear magnetic resonance spectroscopy, Surface Science Reports, 1: 157 (1981).

    Article  CAS  Google Scholar 

  2. J. P. Yesinowski, High-resolution NMR spectroscopy of solids and surface-adsorbed species in colloidal suspension: 31P NMR spectra of hydroxyapatite and diphosphonates, J. Am. Chem. Soc., 103: 6266 (1981).

    Article  CAS  Google Scholar 

  3. J. P. Yesinowski, R. A. Wolfgang, and M. J. Mobley, 19F MAS-NMR of fluorapatite, fluoro-hydroxyapatite solid solutions and related compounds, abstract and poster presented at 23rd Experimental NMR Conference, Madison, April, 1982; J. P. Yesinowski, manuscript in preparation.

    Google Scholar 

  4. J. P. Yesinowski and M. J. Mobley,19F MAS-NMR of fluoridated hydroxyapatite surfaces, manuscript in preparation.

    Google Scholar 

  5. H. G. McCann, The solubility of fluorapatite and its relationship to that of calcium fluoride, Archs. Oral Biol., 13: 987 (1968).

    Article  CAS  Google Scholar 

  6. W. P. Rothwell, J. S. Waugh, and J. P. Yesinowski, High-resolution variable-temperature 31P NMR of solid calcium phosphates, J. Am. Chem. Soc., 102: 2637 (1980).

    Article  CAS  Google Scholar 

  7. E. R. Andrew, in “Prog. in NMR Spectroscopy”, eds. J. W. Emsley, J. Feeney, and L. H. Sutcliffe, 8 Part 1, 1–39 (1971), and references therein.

    Google Scholar 

  8. I. J. Lowe, Free induction decays of rotating solids, Phys. Rev. Letters, 2: 285 (1959).

    Article  CAS  Google Scholar 

  9. B. C. Gerstein, R. G. Pembleton, R. C. Wilson, and L. M. Ryan, High resolution NMR in randomly oriented solids with homonuclear dipolar broadening: combined multiple pulse NMR and magic angle spinning, J. Chem. Phys., 66: 361 (1977).

    Article  CAS  Google Scholar 

  10. M. M. Maricq and J. S. Waugh, NMR in rotating solids, J. Chem. Phys., 70: 3300 (1979).

    Article  CAS  Google Scholar 

  11. J. Herzfeld and A. E. Berger, Sideband intensities in NMR spectra of samples spinning at the magic angle, J. Chem. Phys., 73: 6021 (1980).

    Article  CAS  Google Scholar 

  12. E. C. Moreno, M. Kresak, and R. T. Zahradnik, Physicochemical aspects of fluoride-apatite systems relevant to the study of dental caries, Caries Res., Suppl. 1, 11: 142 (1977).

    Article  Google Scholar 

  13. M. I. Kay, R. A. Young, and A. S, Posner, Crystal structure of hydroxyapatite, Nature, 204: 1050 (1964).

    Article  CAS  Google Scholar 

  14. R. A. Young, W. van der Lugt, and J. C. Elliott, Mechanism for fluorine inhibition of diffusion in hydroxyapatite, Nature, 223: 729 (1969).

    Article  CAS  Google Scholar 

  15. W. van der Lugt, D. I. M. Knotterus, and W. G. Perdok, Nuclear magnetic resonance investigation of fluoride ions in hydroxyapatite, Acta. Cryst., B27: 1509 (1971).

    Article  Google Scholar 

  16. R. G. Knoubovets, M. L. Afanasjev, and S. P. Habuda, Hydrogen bond and 19F NMR chemical shift anisotropy in apatite, Spectroscopy Letters, 2: 121 (1969).

    Article  Google Scholar 

  17. A. M. Vakhrameev, S.P. Gabuda, and R.G. Knubovets, 1H and 19F NMR in apatites of the type Ca5(PO4)3[F1_x(0x)], J. Struct. Chem. (USSR), 19: 256 (1978).

    Article  Google Scholar 

  18. F. Freund and R. M. Knobel, Distribution of fluorine in hydroxyapatite studied by infrared spectroscopy, J. Chem. Soc. Dalton, 1136 (1977).

    Google Scholar 

  19. D. P. Burum, D. D. Elleman, and W.-K. Rhim, A multiple pulse zero crossing NMR technique, and its application to 19F chemical shift measurements in solids, J. Chem. Phys., 68: 1164 (1978).

    Article  CAS  Google Scholar 

  20. J. L. Carolan, A pulsed NMR investigation of 19F chemical shift anisotropy in single crystals of fluoro- apatite, Chem. Phys. Letters, 12: 389 (1971).

    Article  CAS  Google Scholar 

  21. R. W. Vaughan, D. D. Elleman, W.-K. Rhim, and L. M. Stacey, 19F chemical shift tensor in group II difluorides, J. Chem. Phys., 57: 5383 (1972).

    Article  CAS  Google Scholar 

  22. W. E. Brown and K. G. Konig, eds., Caries Res., 11, Suppl. 1,1–327 (1977), and references therein.

    Google Scholar 

  23. E. D. Eanes and A. H. Reddi, The effect of fluoride on bone mineral apatite, Metab. Bone Dis. & Rel. Res., 2: 3 (1979).

    Article  CAS  Google Scholar 

  24. S. H. Y. Wei and W. C. Forbes, X-ray diffraction analyses of the reactions between intact and powdered enamel and several fluoride solutions, J. Dent. Res., 47: 471 (1968).

    Article  CAS  Google Scholar 

  25. C. A. Baud and S. Bang, Electron probe and X-ray diffraction microanalyses of human enamel treated in vitro by fluoride solution, Caries Res., 4: 1 (1970).

    Article  CAS  Google Scholar 

  26. E. J. Duff, An infrared and X-ray diffractometric study of the incorporation of fluoride into hydroxyapatite under conditions of the cyclic variation of pH, Archs. oral Biol., 11: 763 (1975).

    Article  Google Scholar 

  27. B. Laufer, I. Mayer, I. Gedalia, D. Deutsch, H. W. Kaufman, and M. Tal, Fluoride-uptake and fluoride-residual of fluoride-treated human root dentine in vitro determined by chemical, scanning electron microscopy and X-ray diffraction analyses, Archs. oral Biol., 26: 159 (1981).

    Article  CAS  Google Scholar 

  28. M. D. Francis, J. A. Gray, and W. J. Griebstein, The formation and influence of surface phases on calcium phosphate solids, Adv. in Oral Biology, 3:83 (1968).

    CAS  Google Scholar 

  29. B. Menzel and C. H. Amberg, An infrared study of the hydroxyl groups in a nonstoichiometric calcium hydroxyapatite with and without fluoridation, J. Colloid Interf. Sci., 38: 256 (1972).

    Article  CAS  Google Scholar 

  30. D. M. Hercules and N. L. Craig, Composition of fluoridated dental enamel studied by X-ray photoelectron spectroscopy (ESCA), J. Dent. Res., 55: 829 (1976).

    Article  CAS  Google Scholar 

  31. J. Lin, S. Raghavan, and D. W. Fuerstenau, The adsorption of fluoride ions by hydroxyapatite from aqueous solution, Colloids and Surfaces, 3: 357 (1981).

    Article  CAS  Google Scholar 

  32. H. Uchtmann and H. Duschner, Electron spectroscopic studies of interactions between superficially-applied fluorides and surface enamel, J. Dent. Res., 61: 423 (1982).

    Article  CAS  Google Scholar 

  33. S. Chander, C. C. Chiao, and D. W. Fuerstenau, Transformation of calcium fluoride for caries prevention, J. Dent. Res., 61: 403 (1982).

    Article  CAS  Google Scholar 

  34. H. G. McCann, Reactions of fluoride ion with hydroxyapatite, J. Biol. Chem., 201: 247 (1953).

    CAS  Google Scholar 

  35. M. A. Spinelli, F. Brudevold, and E. Moreno, Mechanism of fluoride uptake by hydroxyapatite, Archs. oral Biol., 16: 187 (1971).

    Article  CAS  Google Scholar 

  36. F. F. Feagin, Calcium, phosphate, and fluoride deposition on enamel surfaces, Calc. Tiss. Res., 8: 154 (1971).

    Article  CAS  Google Scholar 

  37. V. Caslayska, E. C. Moreno, and F. Brudevold, Determination of the calcium fluoride formed from in vitro exposure of human enamel to fluoride solutions, Archs. oral Biol., 20: 333 (1975).

    Article  Google Scholar 

  38. A. Abragam, “The Principles of Nuclear Magnetism”, Oxford University Press, London, pp. 33–34, 58–63, (1971).

    Google Scholar 

  39. W. T. Dixon, Spinning-sideband-free and spinning-sidebandonly NMR spectra in spinning samples, J. Chem. Phys., 77: 1800 (1982).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yesinowski, J.P., Wolfgang, R.A., Mobley, M.J. (1984). New NMR Methods for the Study of Hydroxyapatite Surfaces. In: Misra, D.N. (eds) Adsorption on and Surface Chemistry of Hydroxyapatite. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9012-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9012-2_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9014-6

  • Online ISBN: 978-1-4757-9012-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics