Skip to main content

Finite-Element Analysis of Adhesive Joints

  • Chapter

Abstract

Adhesive bonding is increasingly used to fasten metallic to metallic or metallic to composite structural components together. This is because in many present-day applications, conventional fasteners such as bolts, rivets, welds, etc., are unsuitable, especially if the components are made of polymeric or composite materials. The sonar transducer adhesively bonded acoustical window, the likely necessity of the repair of the composite structural components of carrier-based aircraft, and door inner assembly to outer panel, main body frame joints, trunk lid inner to outer and sealants in an automobile provide examples of such applications. Penetration methods (i.e., drilling holes, etc.) cause high stress concentrations and, in the case of composites, sever the fiber reinforcement which in turn reduces the strength of the joint. On the other hand, bonded joints tend to be damage-tolerant due to the high damping behavior of the adhesive layer and less expensive due to lower fabrication cost. The use of adhesives increases the joint strength, distributes the loads more evenly, and enables alternative jointing methods to be reduced or eliminated. Dissimilar materials (e.g., steel, aluminum, plastics, glass, etc.) can be joined together by bonding even where it is impossible to gain access to either side of the joint, thereby increasing the design flexibility.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. N. Reddy and S. Roy, Finite Element Analysis of Adhesively Bonded Joints, Report No. VPI-E-85.18, ONR, Department of Engineering Science and Mechanics, VPI&SU, Blacksburg, VA (August 1985).

    Google Scholar 

  2. S. Roy and J. N. Reddy, Nonlinear Viscoelastic Analysis of Adhesively Bonded Joints, Report No. VPI-E-86.28, ONR, Department of Engineering Science and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA (November 1986).

    Google Scholar 

  3. M. Goland and E. Reissner, The stresses in cemented joints, Appl. Mech. 1, A17–A27 (1944).

    Google Scholar 

  4. F. Erdogan and M. Ratwani, Stress distributions in bonded joints, J. Compos. Mater. 5, 378–393 (1971).

    Article  Google Scholar 

  5. G. R. Wooley and D. R. Carver, Stress concentration factors for bonded lap joints, J. Aircr. 8, 817–820 (1971).

    Article  Google Scholar 

  6. L. J. Hart-Smith, Adhesive Bonded Single Lap Joints, NASA CR-112236 (January 1973).

    Google Scholar 

  7. A. T. Liu, Linear Elastic and Elasto-Plastic Stress Analysis for Adhesive Lap Joints, T.A.M. Report No. 410, University of Illinois at Urbana-Champaign (July 1976).

    Google Scholar 

  8. R. D. Adams and N. A. Peppiatt, Stress analysis of adhesively bonded lap joints, Strain Anal. 9, 185–196 (1974).

    Article  Google Scholar 

  9. R. D. Adams and N. A. Peppiatt, Stress analysis of lap joints in fibre reinforced composite materials, in: Fibre Reinforced Plastics, p. 45, ICE, London (1977).

    Google Scholar 

  10. E. A. Humphreys and C. T. Herakovich, Nonlinear Analysis of Bonded Joints with Thermal Effects, Report VPI-E-77.19, Department of Engineering Science and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA (June 1977).

    Google Scholar 

  11. D. J. Allman, A theory for elastic stresses in adhesive bonded lap joints, Mech. Appl. Math. 30, 415–436 (1977).

    Article  Google Scholar 

  12. L. J. Hart-Smith, Analysis and Design of Advanced Composite Bonded Joints, NASA CR-2218 (April 1974).

    Google Scholar 

  13. U. Yuceoglu and D. P. Updike, Stress analysis of bonded plates and joints, Engineering Mechanics Division, ASCE 106, 37–56 (1980).

    Google Scholar 

  14. F. Delale and F. Erdogan, Viscoelastic analysis of adhesively bonded joint, J. Appl. Mech. 48, 331–338 (1981).

    Article  Google Scholar 

  15. F. Delale and F. Erdogan, Time-temperature effect in adhesively bonded joints, J. Compos. Mater. 5, 561–581 (1981).

    Google Scholar 

  16. S. Gali and O. Ishai, Interlaminar stress distribution within an adhesive layer in the non-linear range, J. Adhes. 9, 253–266 (1978).

    Article  Google Scholar 

  17. Y. R. Nagaraja and R. S. Alwar, Nonlinear stress analysis of an adhesive tubular lap joint, J. Adhes. 10, 97–106 (1979).

    Article  Google Scholar 

  18. Y. R. Nagaraja and R. S. Alwar, Viscoelastic Analysis of an Adhesive-Bonded Plane Lap Joint, Comput. Struct. 6, 621–627 (1980).

    Article  Google Scholar 

  19. E. C. Francis, W. L. Hufferd, D. G. Lemini, R. E. Thompson, W. E. Briggs, and R. R. Parmerter, Time Dependent Fracture in Adhesive Bonded Joints, Chemical Systems Division, Sunnyvale, California, Interim Reports CSD 2769–1R-01/02 (May and Nov. 1982).

    Google Scholar 

  20. B. Dattaguru, R. A. Everette, Jr., J. D. Whitcomb, and W. S. Johnson, Geometrically nonlinear analysis of adhesively bonded joints, J. Eng. Mater. Technol. 106, 59–65 (1984).

    Article  Google Scholar 

  21. L. R. Botha, R. M. Jones, and H. F. Brinson, Viscoelastic Analysis of Adhesive Stresses in Bonded Joints, Report VPI-E-33–17, Department of Engineering Science and Mechanics, Virginia Polytechnic Institute, Blacksburg, VA (May 1983).

    Google Scholar 

  22. M. Henriksen, Nonlinear viscoelastic stress analysis—A finite element approach, Comput. Struct. 18, 133–139 (1984).

    Article  Google Scholar 

  23. E. B. Becker et al., Viscoelastic Stress Analysis Including Moisture Diffusion for Adhesively Bonded Joints, Report AFWAL-TR-84–4057, General Dynamics, Fort-Worth Division, TX (August 1984).

    Google Scholar 

  24. S. Yadagiri and C. Papi Reddy, Viscoelastic analysis of nearly incompressible solids, Comput. Struct. 20, 817–825 (1985).

    Article  Google Scholar 

  25. S. Yadagiri, C. Papi Reddy, and T. Sanjeeva Reddy, Viscoelastic analysis of adhesively bonded joints, Comput. Struct. 27, 445–454 (1987).

    Article  Google Scholar 

  26. R. A. Schapery, Further Development of a Thermodynamic Constitutive Theory: Stress Formulation, A&S Report No. 69–2, Purdue University, W. Lafayette (Feb. 1969).

    Google Scholar 

  27. D. Peretz and Y. Weitsman, The non-linear thermo-viscoelastic characterizations of FM-73 adhesives, J. Rheol. 26, 245–261 (1983).

    Article  Google Scholar 

  28. W. G. Knauss and I. J. Emri, Nonlinear viscoelasticity based on free volume considerations, Comput. Struct. 13, 123–128 (1981).

    Article  Google Scholar 

  29. A. K. Prickett and L. Hollaway, The analysis of elastic-plastic adhesive stress in bonded lap joints in FRP structures, Comput. Struct. 4, 135–160 (1985).

    Article  Google Scholar 

  30. R. A. Schapery, A method of viscoelastic stress analysis using elastic solutions, J. Franklin Inst. 279, 268–289 (1965).

    Article  Google Scholar 

  31. Y. Weitsman, An investigation of non-linear viscoelastic effects on load transfer in a symmetric double lap joint, J. Adhes. 11, 279–289 (1981).

    Article  Google Scholar 

  32. B. G. Schaffer and D. F. Adams, Non-linear viscoelastic analysis of a unidirectional composite material, J. Appl. Mech. 48, 859–865 (1981).

    Article  CAS  Google Scholar 

  33. H. Ghoneim and Y Chen, A viscoelastic-viscoplastic constitutive equation and its finite element implementation, Comput. Struct. 17, 499–509 (1983).

    Article  Google Scholar 

  34. R. A. Schapery, Correspondence principles and a generalized J integral for large deformation and fracture analysis of viscoelastic media, Int. J. Fract. 25, 195–223 (1984).

    Article  Google Scholar 

  35. P. Czarnocki and K. Piekarski, Nonlinear numerical stress analysis of a symmetric adhesively bonded lap joint, Int. J. Adhes. and Adhes. 6, 157–160 (1986).

    Article  CAS  Google Scholar 

  36. G. P. Anderson and K. L. DeVries, Stress state in lap shear specimens, The Adhesion Society News Letter 6 (1983).

    Google Scholar 

  37. S. Roy and J. N. Reddy, Nonlinear analysis of adhesively bonded joints, J. Non-Linear Mech. 23, 97–112 (1988).

    Article  Google Scholar 

  38. S. Roy and J. N. Reddy, Nonlinear viscoelastic analysis of adhesively bonded joints, Tire Sci. Technol. 16, 146–170 (1988).

    Article  Google Scholar 

  39. Y. Weitsman, Stresses in adhesive joints due to moisture and temperature, J. Compos. Mater. 11, 368 (1977).

    Article  Google Scholar 

  40. Y. Weitsman, Interfacial stresses in viscoelastic adhesive-layers due to moisture sorption, Int. J. Solids Struct. 15, 701–713 (1970).

    Article  Google Scholar 

  41. F. E. L. Tobing, M. S. Shephard, and S. S. Sternstein, Finite element analysis of moisture effects in graphite-epoxy composites, Comput. Struct. 16, 457–469 (1983).

    Article  Google Scholar 

  42. G. Yaniv and O. Ishai, Hygrothermal effects on stresses and deformations in a bonded fiber-reinforced plastic/aluminum system, Compos. Technol. Rev. 6, 63–73 (1984).

    Article  Google Scholar 

  43. D. R. Lefebvre, T. C. Ward, D. A. Dillard, and H. F. Brinson, A Nonlinear Constitutive Behavior for Diffusion in Polymers, Report No. VPI-E-87–2, CAS/ESM-87–1, Virginia Polytechnic Institute and State University, Blacksburg, VA (1987).

    Google Scholar 

  44. S. Roy and J. N. Reddy, A finite element analysis of adhesively bonded composite joints with moisture diffusion and delayed failure, Comput. Struct. 29, 1011–1031 (1988).

    Article  Google Scholar 

  45. S. Roy and J. N. Reddy, Finite-element models of viscoelasticity and diffusion in adhesively bonded joints, Int. J. Numer. Methods Eng. 26, 2531–2546 (1988).

    Article  Google Scholar 

  46. J. N. Reddy, Energy and Variational Methods in Applied Mechanics, Wiley, New York (1984).

    Google Scholar 

  47. J. N. Reddy, An Introduction to the Finite Element Method, McGraw-Hill, New York (1984).

    Google Scholar 

  48. C. Hiel, A. H. Cardon, and H. F. Brinson, The Nonlinear Viscoelastic Response of Resin Matrix Composite Laminates, Department of Engineering Science and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA (March 1983).

    Google Scholar 

  49. Quarterly Progress Report No. 6 (1 Dec. 1980 to 23 Feb. 1981), Integrated Methodology for Adhesive Bonded Joint Life Predictions, General Dynamics, Fort Worth Division, Technical Report FZM-6961 (March 1981).

    Google Scholar 

  50. M. A. Rochefort and H. F. Brinson, Nonlinear Viscoelastic Characterization of Structural Adhesives, Report VPI-E-83.26, NASA Contractor Report 172279, Department of Engineering Science and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia (July 1983).

    Google Scholar 

  51. S. Roy, D. R. Lefebvre, D. A. Dillard, and J. N. Reddy, A Model for the Diffusion of Moisture in Adhesive Joints. Part III: Numerical Simulations, J. Adhesion, 27, 41–62 (1989).

    Article  CAS  Google Scholar 

  52. E. Moussiaux, H. F. Brinson, and A. H. Cardon, Bending of a Bonded Beam as a Test Method for Adhesive Properties, VPI-E-87–9, CAS/ESM-87–2 (June 1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Reddy, J.N., Roy, S. (1991). Finite-Element Analysis of Adhesive Joints. In: Lee, LH. (eds) Adhesive Bonding. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9006-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9006-1_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9008-5

  • Online ISBN: 978-1-4757-9006-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics