Skip to main content

The Role of Growth Hormone, Insulin-Like Growth Factors, Epidermal Growth Factor and Transforming Growth Factor β in Diabetic Kidney Disease: An Update

  • Chapter
The Kidney and Hypertension in Diabetes Mellitus

Abstract

Various growth factors have been proposed to be players in different areas of diabetes mellitus including a possible relationship to the characteristic changes in metabolism and development of complications. In particular, growth hormone (GH) and insulin-like growth factors (IGFs) system have a long and distinguished history with relation both to the diabetic metabolic aberration and the pathogenesis of diabetic angiopathy. The published evidence covering this area has recently been reviewed [1–3]. Further, substantial evidence has suggested that some growth factors (i.e. GH and IGFs, epidermal growth factor (EGF), transforming growth factor β (TGF-ß), platelet derived growth factor (PDGF), tumor necrosis factor a (TNF-α) and fibroblastic growth factors (FGFs)) have conceivable effects on the development of renal complications in diabetes as reviewed in The Kidney and Hypertension in Diabetes Mellitus, Second Edition, 1994 [4]. The present review is an update of the topic with emphasis on three of the above mentioned growth factor systems. The first part of the review presents an update for a definite role of the GH/IGF system in the pathogenesis of the renal changes in experimental diabetes with focus on the renoprotective effects of long-acting somatostatin analogues and GH-receptor antagonists. In the second and third part, an update of the literature is presented suggesting a causal role for EGF and TGF-β in the development of diabetic kidney disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Flyvbjerg A, Frystyk J, Sillesen IB, Ørskov H. Growth hormone and insulin-like growth factor I in experimental and human diabetes. In: Alberti KGMM, Krall LP (Eds), Diabetes Annual/6, Elsevier Science Publishers B.V., Amsterdam 1991; pp. 562–590.

    Google Scholar 

  2. Growth hormone and insulin-like growth factor I in human and experimental diabetes. Flyvbjerg A, Ørskov H , Alberti KGMM (Eds), John Wiley & Sons, Chichester 1993; pp. 1–322.

    Google Scholar 

  3. International symposium on glucose metabolism and growth factors. Flyvbjerg A, Alberti KGMM, Froesch ER, De Meyts P, von zur Mühlen A, Ørskov H (Eds), Metabolism 1995; 44 [Suppl 4]: pp. 1–123.

    Google Scholar 

  4. Flyvbjerg A, Nielsen B, Skjærbæk C, Frystyk J, Grønbæk H, Ørskov H. Roles of growth factors in diabetic kidney disease. In: Mogensen CE (Ed), The Kidney and Hypertension in Diabetes Mellitus, 2nd Edition, Kluwer Academic Publishers, Boston, Dordrecht, London, 1994, pp. 233–243.

    Chapter  Google Scholar 

  5. Bortz JD, Rotwein P, De Vol D, Bechtel PJ, Hansen VA, Hammerman MR. Focal expression of insulin-like growth factor I in rat kidney collecting duct. J Cell Biol 1988; 107: 811–819.

    Article  PubMed  CAS  Google Scholar 

  6. Flyvbjerg A, Marshall SM, Frystyk J, Rasch R, Bomfeldt KE, Amqvist H, Jensen PK, Pallesen G, Ørskov H. Insulin-like growth factor I in initial renal hypertrophy in potassium-depleted rats. Am J Physiol 1992; 262: F1023–F1031.

    Google Scholar 

  7. Landau D, Chin E, Bondy C, Domene H, Roberts CT, Grønbæk H, Flyvbjerg A, LeRoith D. Expression of insulin-like growth factor binding proteins in the rat kidney: Effects of long-term diabetes. Endocrinology 1995; 136: 1835–1842.

    CAS  Google Scholar 

  8. Amqvist HJ, Ballermann BJ, King GL. Receptors for and effects of insulin and IGF-I in rat glomerular mesangial cells. Am J Physiol 1988; 254: C411–C416.

    Google Scholar 

  9. Pillion DJ, Haskell JF, Meezan E. Distinct receptors for insulin-like growth factor I in rat renal glomeruli and tubules. Am J Physiol 1988; 255: E504–E512.

    Google Scholar 

  10. Chin E, Bondy C. Insulin-like growth factor system gene expression in the human kidney. J Clin Endocrinol Metab 1992; 75: 962–968.

    Article  PubMed  CAS  Google Scholar 

  11. Shimasaki S, Shimonaka M, Zhang HP, Ling N. Identification of five different insulin-like growth factor binding proteins (IGFBPs) from adult rat serum and molecular cloning of a novel IGFBP-5 in rat and human. J Biol Chem 1991; 266:10646–10653.

    PubMed  CAS  Google Scholar 

  12. Shimasaki S, Gao L, Shimonaka M, Ling N. Isolation and molecular cloning of insulin-like growth factor-binding protein-6. Mol Endocrinol 1991; 5: 938–948.

    Article  PubMed  CAS  Google Scholar 

  13. Flyvbjerg A The growth hormone/insulin-like growth factor axis in the kidney: Aspects in relation to chronic renal failure. J Pediatr Endocrinol 1994; 7: 85–92.

    Article  PubMed  CAS  Google Scholar 

  14. Flyvbjerg A, Landau D, Domene H, Hernandez L, Grønbæk H, LeRoith D. The role of growth hormone, insulin-like growth factors (IGFs), and IGF-Binding proteins in experimental diabetic kidney disease. Metabolism 1995; 44: 67–71.

    Article  PubMed  CAS  Google Scholar 

  15. Flyvbjerg A. Role of growth hormone, insulin-like growth factors (IGFs) and IGF-binding proteins in the renal complications of diabetes. Kidney Int 1997; 52[Suppl 60]: S12–S19.

    Google Scholar 

  16. Flyvbjerg A, Thorlacius-Ussing O, Næraa R, Ingerslev J, Ørskov H. Kidney tissue somatomedin C and initial renal growth in diabetic and uninephrectomized rats. Diabetologia 1988; 31: 310–314.

    PubMed  CAS  Google Scholar 

  17. Flyvbjerg A, Frystyk J, Thorlacius-Ussing O, Ørskov H. Somatostatin analogue administration prevents increase in kidney somatomedin C and initial renal growth in diabetic and uninephrectomized rats. Diabetologia 1989; 32: 261–265.

    Article  PubMed  CAS  Google Scholar 

  18. Flyvbjerg A, Bomfeldt KE, Marshall SM, Amqvist HJ, Ørskov H. Kidney IGF-I mRNA in initial renal hypertrophy in experimental diabetes in rats. Diabetologia 1990; 33: 334–338.

    Article  PubMed  CAS  Google Scholar 

  19. Flyvbjerg A, Ørskov H. Kidney tissue insulin-like growth factor I and initial renal growth in diabetic rats: relation to severity of diabetes. Acta Endocrinol (Copenh) 1990; 122: 374–378.

    CAS  Google Scholar 

  20. Werner H, Shen Orr Z, Stannard B, Burguera B, Roberts CT Jr, LeRoith D. Experimental diabetes increases insulin-like growth factor I and II receptor concentration and gene expression in kidney. Diabetes 1990; 39:1490–1497.

    Article  PubMed  CAS  Google Scholar 

  21. Bomfeldt KE, Amqvist HJ, Enberg B, Mathews LS, Norstedt G. Regulation of insulin-like growth factor-I and growth hormone receptor gene expression by diabetes and nutritional state in rat tissues. J Endocrinol 1989; 122: 651–656.

    Article  Google Scholar 

  22. Weiss O, Anner H, Nephesh I, Alayoff A, Bursztyn M, Raz I. Insulin-like growth factor I (IGF-I) and IGF-I receptor gene expression in the kidney of chronically hypoinsulinemic rat and hyperinsulinemic rat. Metabolism 1995; 44:982–986.

    Article  PubMed  CAS  Google Scholar 

  23. Marshall SM, Flyvbjerg A, Frystyk J, Korsgaard L, Ørskov H. Renal insulin-like growth factor I and growth hormone receptor binding in experimental diabetes and after unilateral nephrectomy in the rat. Diabetologia 1991; 34: 632–639.

    Article  PubMed  CAS  Google Scholar 

  24. Flyvbjerg A, Kessler U, Dorka B, Funk B, Ørskov H, Kiess W. Transient increase in renal insulin-like growth factor binding proteins during initial kidney hypertrophy in experimental diabetes in rats. Diabetologia 1992; 35: 589–593.

    Article  PubMed  CAS  Google Scholar 

  25. Grønbæk H, Nielsen B, Frystyk J, Flyvbjerg A, Ørskov H. Effect of lanreotide, a somatostatin analogue, on diabetic renal hypertrophy, kidney and serum IGF-I and IGF binding proteins. Exp Nephrol 1996; 4: 295–303.

    PubMed  Google Scholar 

  26. Steer KA, Sochor M, Kunjara S, Doepmer W, McLean P. The effect of a somatostatin analogue (SMS 201–995) on the concentration of phosphoribosyl pyrophosphate and the activity of the pentose phosphate pathway in the early renal hypertrophy of experimental diabetes in the rat. Biochem Med Metab Biol 1988; 39:226–233.

    Article  PubMed  CAS  Google Scholar 

  27. Grønbæk H, Nielsen B, Frystyk J, Ørskov H, Flyvbjerg A. Effect of octreotide on experimental diabetic renal and glomerular growth: Importance of early intervention. J Endocrinol 1995; 147: 95–102.

    Article  PubMed  Google Scholar 

  28. Grønbæk H, Nielsen B, Østerby R, Harris AG, Ørskov H, Flyvbjerg A. Effect of octreotide and insulin on manifest renal and glomerular hypertrophy and urinary albumin excretion in long-term experimental diabetes in rats. Diabetologia 1995; 38: 135–144.

    Article  PubMed  Google Scholar 

  29. Weiss O, Rubinger D, Nephesh I, Moshe R, Raz I. The influence of octreotide on the IGF system gene expression in the kidney of diabetic rats [Abstract]. Diabetologia 1995; 38: A206.

    Google Scholar 

  30. Flyvbjerg A, Schuller AGP, van Neck JW, Groffen C, Ørskov H, Drop SLS. Stimulation of hepatic insulin-like growth factor binding protein-1 and -3 gene expression by octreotide in rats. JEndocrinol 1995; 147: 545–551.

    Article  CAS  Google Scholar 

  31. Flyvbjerg A, Marshall SM, Frystyk J, Hansen KW, Harris AG, Ørskov H. Octreotide administration in diabetic rats: effects on renal hypertrophy and urinary albumin excretion. Kidney Int 1992; 41: 805–812.

    Article  PubMed  CAS  Google Scholar 

  32. Iwasaki S. Octreotide suppresses the kidney weight and glomerular hypertrophy in diabetic rats. Nippon Jinzo Gakkai Shi 1993; 35: 247–255.

    PubMed  CAS  Google Scholar 

  33. Muntzel M, Hannedouche T, Niesor R, Noel LH, Souberbielle JC, Lacour B, Drueke T. Long-term effects of a somatostatin analogue on renal haemodynamics and hypertrophy in diabetic rats. Clin Sci 1992; 83: 575–581.

    PubMed  CAS  Google Scholar 

  34. Igarashi K, Ho S, Shibata A. Effect of a somatostatin analogue (SMS 201–995) on urinary albumin excretion in streptozotocin-induced diabetic rats. J Japan Diab Soc 1990; 33: 531–538.

    CAS  Google Scholar 

  35. Igarashi K, Nakazawa A, Tani N, Yamazaki M, Ito S, Shibata A. Effect of a somatostatin analogue (SMS 201–995) on renal function and excretion in diabetic rats. J Diab Compl 1991; 5: 181–183.

    CAS  Google Scholar 

  36. Grønbæk H, Vogel I, Lancranjan I, Flyvbjerg A, Ørskov H. Effect of octreotide, Captopril, or insulin on manifest long-term experimental diabetic renal changes. Kidney Int 1998; in press.

    Google Scholar 

  37. Vora J, Owens DR, Luzio SD, Atiea J, Ryder R, Hayes TM. Renal response to intravenous somatostatin in insulin-dependent diabetic patients and normal subjects. J Clin Endocrinol Metab 1987;64:975–979.

    Article  PubMed  CAS  Google Scholar 

  38. Pedersen MM, Christensen SE, Christiansen JS, Pedersen EB, Mogensen CE, Ørskov H. Acute effects of a somatostatin analogue on kidney function in type 1 diabetic patients. Diab Med 1990; 7: 304–309.

    Article  CAS  Google Scholar 

  39. Krempf M, Ranganathan S, Remy JP, Charbonnel B, Guillon J. Effect of a long acting somatostatin analogue (SMS 201–995) on high glomerular filtration rate in insulin dependent diabetic patients. Int J Clin Pharmacol Ther Toxicol 1990; 28: 309–311.

    PubMed  CAS  Google Scholar 

  40. Serri O, Beauregard H, Brazeau P, Abribat T, Lambert J, Harris A, Vachon L. Somatostatin analogue, octreotide, reduces increased glomerular filtration rate and kidney size in insulin-dependent diabetes. JAMA 1991; 265: 888–892.

    Article  PubMed  CAS  Google Scholar 

  41. Chen WY, Wight DC, Wagner TE, Kopchick JJ. Expression of a mutated bovine growth hormone gene suppresses growth of transgenic mice. Proc Natl Acad Sci USA 1990; 87: 5061–5065.

    Article  PubMed  CAS  Google Scholar 

  42. Chen WY, Wight DC, Chen N-Y, Coleman TA, Wagner TE, Kopchick JJ. Mutations in the third a-helix of bovine growth hormone dramatically affect its intracellular distribution in vitro and growth enhancement in transgenic mice. J Biol Chem 1991; 266:2252–2258.

    PubMed  CAS  Google Scholar 

  43. Chen WY, White ME, Wagner TE, Kopenick JJ. Functional antagonism between endogenous mouse growth hormone (GH) and a GH analog results in dwarf transgenic mice. Endocrinology 1991; 129: 1402–1408.

    Article  PubMed  CAS  Google Scholar 

  44. Chen N-Y, Chen WY, Bellush L, Yang C-W, Striker U, Striker GE, Kopchick JJ. Effects of streptozotocin treatment in growth hormone (GH) and GH antagonist transgenic mice. Endocrinology 1995; 136: 660–667.

    Article  PubMed  CAS  Google Scholar 

  45. Chen N-Y, Chen WY, Kopchick JJ. A growth hormone antagonist protects mice against streptozotocin induced glomerulosclerosis even in the presence of elevated levels of glucose and glycated hemoglobin. Endocrinology 1996; 137: 5163–5165.

    Article  PubMed  CAS  Google Scholar 

  46. Liu Z-H, Striker U, Phillips C, Chen N-Y, Chen Y, Kopchick JJ, Striker GE. Growth hormone expression is required for the development of diabetic glomerulosclerosis in mice. Kidney Int 1995; 48[Suppl 51]: S37–S38.

    Google Scholar 

  47. Olsen PS, Nexe E, Poulsen SS, Hansen HF, Kirkegaard P. Renal origin of rat urinary epidermal growth factor. Reg Pept 1984; 10:37–45.

    Article  CAS  Google Scholar 

  48. Gustavson B, Cowley G, Smith JA, Ozanne B. Cellular localization of human epidermal growth factor receptor. Cell Biol Int Rep 1984; 8: 649–658.

    Article  Google Scholar 

  49. Scoggins BA, Butkus A, Coghlan JP, et al. In vivo cardiovascular, renal and endocrine effects of epidermal growth factor in sheep. In: Labrie F, Prouix L(Eds), Endocrinology, Elsevier Science Publishers B. V., Amsterdam 1984; pp. 573–576.

    Google Scholar 

  50. Stanton RC, Seifter JL. Epidermal growth factor rapidly activates the hexose monophosphate shunt in kidney cells. Am J Physiol 1988; 253: C267–C271.

    Google Scholar 

  51. Vehaskari VM, Hering-Smith KS, Moskowitz DW, Weirer ID, Hamm LL. Effect of epidermal growth factor on sodium transport in the cortical collecting tubules. Am J Physiol 1989; 256: F803–F809.

    Google Scholar 

  52. Jørgensen PE, Kamper A-L, Munck O, Strandgaard S, Nexe E. Urinary excretion of epidermal growth factor in living human kidney doners and their recipients. Eur J Clin Invest 1995; 25: 442–446.

    Article  PubMed  Google Scholar 

  53. Jennische E, Andersson G, Hansson HA. Epidermal growth factor is expressed by cells in the distal tubulus during postnephrectomy renal growth. Acta Physiol Scand 1987; 129:449–450.

    Article  PubMed  CAS  Google Scholar 

  54. Guh JY, Lai YH, Shin SJ, Chuang LY, Tsai JH. Epidermal growth factor in renal hypertrophy in streptozotocin-diabetic rats. Nephron 1991; 59:641–647.

    Article  PubMed  CAS  Google Scholar 

  55. Gilbert RE, Cox A, McNally PG, Wu LL, Dziadek M, Cooper ME, Jerums G. Increased epidermal growth factor in experimental diabetes related renal growth. Diabetologia 1997; 40: 778–785.

    Article  PubMed  CAS  Google Scholar 

  56. Mathiesen ER, Nexo E, Hommel E, Parving H-H. Reduced urinary excretion of epidermal growth factor in incipient and overt diabetic nephropathy. Diab Med 1989; 6: 121–126.

    Article  CAS  Google Scholar 

  57. Dagogo-Jack S, Marshall SM, Kendall-Taylor P, Alberti KGMM. Urinary excretion of human epidermal growth factor in the various stages of diabetic nephropathy. Clin Endocrinol (Oxf) 1989;31:167–173.

    Article  CAS  Google Scholar 

  58. ter Meulen CG, Bilo HJ, van Kamp GJ, Gans RO, Donker AJ. Urinary epidermal growth factor excretion is correlated to renal function loss per se and not to the degree of diabetic renal failure. Netherlands J Med 1994; 44:12–17.

    Google Scholar 

  59. Lev-Ran A, Hwang DL, Miller JD, Josefsberg Z. Excretion of epidermal growth factor (EGF) in diabetes. Clin Chim Acta 1990; 192: 201–206.

    Article  PubMed  CAS  Google Scholar 

  60. Josefsberg Z, Ross SA, Lev-Ran A, Hwang DL. Effects of enalapril and nitrendipine on the excretion of epidermal growth factor and albumin in hypertensive NIDDM patients. Diab Care 1995; 15: 690–693.

    Article  Google Scholar 

  61. Mattila AL, Pastemack A, Viinikka L, Perheentupa B. Subnormal concentrations of urinary epidermal growth factor in patients with kidney disease. J Clin Endocrinol Metab 1986; 62: 1180–1183.

    Article  PubMed  CAS  Google Scholar 

  62. Nakamura T, Fukui M, Ebihara E, Osada S, Nagaoka I, Tomino Y, Koide H. mRNA expression of growth factors in glomeruli from diabetic rats. Diabetes 1993; 42:450–456.

    Article  PubMed  CAS  Google Scholar 

  63. Ziyadeh FN, Chen Y, Davila A, Goldfarb S. Self limited stimulation of mesangial cell growth in high glucose: autocrine activation of TGF-β reduces proliferation but increases mesangial matrix. Kidney Int 1992; 42:647–656.

    Article  PubMed  Google Scholar 

  64. Choi ME, Eung-Gook K, Ballerinan BJ. Rat mesangial cell hypertrophy in response to transforming growth factor pi. Kidney Int 1993; 44:948–958,

    Article  PubMed  CAS  Google Scholar 

  65. Ziyadeh FN, Snipes ER, Watanabe M, Alvarey RJ, Goldfarb S, Haverty TP. HigH glucose induces cell hypertrophy and stimulates collagen gene transcription in proximal tubule. Am J Physiol 1990; 259: F704–F714.

    Google Scholar 

  66. Rocco MV, Chen Y, Goldfarb S, Ziyadeh FN. Elevated glucose stimulates TGF-p gene expression and bioactivity in proximal tubules. Kidney Int 1992; 41:107–114.

    Article  PubMed  CAS  Google Scholar 

  67. Nakamura T, Miller D, Rouslahti E, Border WA Production of extracellular matrix by glomerular epithelial cells is regulated by transforming growth factor β1. Kidney Int 1992; 41: 1213–1221.

    Article  PubMed  CAS  Google Scholar 

  68. Humes HD, Nakamura T, Cieslinski DA, Miller D, Emmons RV, Border WA. Role of protoglycans and cytoskeleton in the effects of TGF-β1 on renal proximal tubule cells. Kidney Int 1993; 43: 575–584.

    Article  PubMed  CAS  Google Scholar 

  69. Roberts AB, McCune BK, Sporn MB. TGF-ßl: Regulation of extracellular matrix. Kidney Int 1992;41:557–559.

    Article  PubMed  CAS  Google Scholar 

  70. Davies M, Thomas GJ, Martin J, Lovett DH. The purification and characterisation of a glomerular basement membrane degrading neutral proteinase from the rat mesangial cells. Biochem J 1988; 251: 419–425.

    PubMed  CAS  Google Scholar 

  71. Edwards DR, Murphy G, Reynolds JJ, Whitman SE, Docherty AJP, Angel P, Heath JK. Transforming growth factor beta modulates the expression of collagenase and metalloproteinase inhibitor [Abstract]. EMBO J 1987; 6: 1899.

    PubMed  CAS  Google Scholar 

  72. Lovett DH, Marti HP, Martin J, Grond J, Kashfarian DH. Transforming growth factor β1 stimulates mesangial cell synthesis of the 72 kD type IV collagenase independent of TIMP-1 [Abstract]. J Am Soc Nephrol 1991; 1: 578.

    Google Scholar 

  73. Okuda S, Languino LR, Ruoslahti E, Border WA. Elevated expression of transforming growth factor-ß and proteoglycan production in experimental glomerulonephritis. Possible role in expansion of the mesangial matrix. J Clin Invest 1990; 86: 453–462.

    Article  PubMed  CAS  Google Scholar 

  74. Border WA, Okuda S, Languino LR, Sporn MB, Ruoslahti E. Suppression of experimental glomerulonephritis by antiserum against transforming growth factor β1. Nature 1990; 346: 371–374.

    Article  PubMed  CAS  Google Scholar 

  75. Border WA, Noble NA, Yamamoto T, Harper JR, Yamaguchi Y, Pierschbacher MD, Ruoslahti E. Natural inhibitor of transforming growth factor-β protects against scarring in experimental kidney disease. Nature 1992; 360: 361–364.

    Article  PubMed  CAS  Google Scholar 

  76. Kolm V, Sauer U, Olgemoller B, Schleicher ED. High glucose-induced TGF-β1 regulates mesangial production of heparan sulphate proteoglycan. Am J Physiol 1996; 70: F812–F821.

    Google Scholar 

  77. Shankland S J, Scholey JW. Expression of transforming grwoth factor ßl during diabetic renal hypertrophy. Kidney Int 1994; 46: 430–442.

    Article  PubMed  CAS  Google Scholar 

  78. Sharma K, Ziyadeh FN. Renal hypertrophy is associated with upregulation of TGF-β1 gene expression in diabetic BB rat and NOD mouse. Am J Physiol 1994; 67: F1094–F1101.

    Google Scholar 

  79. Pankewycz OG, Guan J-X, Kline Bolton W, Gomez A, Benedict JF. Renal TGF-β regulation in spontaneously diabetic NOD mice with correlations in mesangial cells. Kidney Int 1994; 46: 748–758.

    Article  PubMed  CAS  Google Scholar 

  80. Yamamoto T, Nakamura T, Noble NA, Ruoslahti E, Border WA Expression of transforming growth factor is elevated in human and experimental diabetic glomerulopathy. Proc Natl Acad Sci USA 1993; 90: 1814–1818.

    Article  PubMed  CAS  Google Scholar 

  81. Yamamoto T, Noble NA, Cohen AH, Nast CC, Hishida A, Gold LI, Border WA. Expression of transforming growth factor-β isoforms in human glomerular diseases. Kidney Int 1996; 49: 461–469.

    Article  PubMed  CAS  Google Scholar 

  82. Ziyadeh FN, Sharma K, Ricksen N, Wolf G. Stimulation of collagen gene expression and protein synthesis in murine mesangial cells by high glucose is mediated by autocrine activation of transforming growth factor β. J Clin Invest 1994; 93: 536–542.

    Article  PubMed  CAS  Google Scholar 

  83. Sharma K, Jin Y, Guo J, Ziyadeh FN. Neutralization of TGF-β by anti-TGF-β antibody attenuates kidney hypertrophy and the enhanced extracellular matrix gene expression in STZ-induced diabetic mice. Diabetes 1996; 45: 522–530.

    Article  PubMed  CAS  Google Scholar 

  84. Kagami S, Border WA, Miller DE, Noble NA Angiotensin II stimulates extracellular matrix protein synthesis through induction of transforming growth factor-β expression in rat glomerular mesangial cells. J Clin Invest 1994; 93: 2431–2437.

    Article  PubMed  CAS  Google Scholar 

  85. Gun JY, Yang ML, Yang YL, Chang CC, Chuang LY. Captopril reverses high-glucose-induced growth effects on LLC-PK1 cells partly by decreasing transforming growth factor-β receptor protein expression. J Am Soc Nephrol 1996; 7: 1207–1215.

    Google Scholar 

  86. Gilbert RE, Cox A, Wu LL, Allen TJ, Hulthen L, Jerums G, Cooper ME. Expression of transforming growth factor β1 and type IV collagen in the renal tubulointerstitium in experimental diabetes: effects of angiotensin converting enzyme inhibition. Diabetes 1998; in press.

    Google Scholar 

  87. Hill C, Logan A, Grønbæk H, Sheppard MC, Flyvbjerg A. Effect of ACE-inhibition on the altered intrarenal TGF- β system in experimental diabetic nephropathy [Abstract]. Nephrol Dialysis Transpl 1998; in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Flyvbjerg, A. et al. (1998). The Role of Growth Hormone, Insulin-Like Growth Factors, Epidermal Growth Factor and Transforming Growth Factor β in Diabetic Kidney Disease: An Update. In: Mogensen, C.E. (eds) The Kidney and Hypertension in Diabetes Mellitus. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6752-0_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6752-0_33

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-6754-4

  • Online ISBN: 978-1-4757-6752-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics