Skip to main content
  • 110 Accesses

Abstract

The dominant histological feature of diabetic nephropathy is the thickening of the glomerular basement membrane and expansion of the mesangial matrix [1–3]. The changes correlate strongly with the clinical onset of proteinuria, hypertension and kidney failure. Although more than 50 years have elapsed since Kimmelstiel and Wilson [4] described in diabetic glomeruli the distinctive periodic acid-schiff (PAS)-reactive nodular deposits, progress in elucidating the pathobiochemistry has been slow. Recent investigations with electron microscopic, immunochemical and biochemical methods have led to an improved understanding of the structure-function relationship of the glomerular filtration unit in normal and pathological conditions [5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mauer SM, Ellis E, Bilous RW, Steffes MW. »The pathology of diabetic nephropathy.« In Complications of Diabetes Mellitus, Draznin B, Melmed S, LeRoith D, eds. New York: Alan R Liss Inc., 1989; pp 95–101.

    Google Scholar 

  2. Mauer SM, Steffes MW, Ellis EN, Sutherland DER, Brown DM, Goetz FC. Structural-functional relationships in diabetic nephropathy. J Clin Invest 1984; 74: 1143–1155.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Østerby R, Gall MA, Schmitz A, Nielsen FS, Nyberg G, Parving H-H. Glomerular structure and function in proteinuric type 2 (non-insulin-dependent) diabetic patients. Diabetologia 1993; 36: 1064–1070.

    Article  PubMed  Google Scholar 

  4. Kimmelstiel P, Wilson C. Intercapillary lesions in the glomeruli of the kidney. Am J Pathol 1936; 12: 83–89.

    CAS  PubMed  Google Scholar 

  5. Farquhar MG. »The glomerular basement membrane: A selective macromolecular filter.« In Cell Biology of Extracellular Matrix, Hay E, ed. New York, London: Plenum Press, 1981; pp 335–378.

    Chapter  Google Scholar 

  6. Kim Y, Kleppel M, Butkowski R, Mauer M, Wieslander J, Michael A. Differential expression of basement membrane collagen chains in diabetic nephropathy. Am J Pathol 1991; 138: 413–420.

    CAS  PubMed  Google Scholar 

  7. Nerlich A, Schleicher E. Immunohistochemical localization of extracellular matrix components in human diabetic glomerular lesions. Am J Pathol 1991; 139: 889–899.

    CAS  PubMed  Google Scholar 

  8. Schleicher ED, Nerlich A, Sauer U, Wiest I, Specks U, Timpl R. Immunhistochemische Untersuchungen zur Verteilung Kollagen Typ VI bei diabetischer Nephropathie (abstract). Diabetes und Stoffwechsel 1993; 2: 185.

    Google Scholar 

  9. Timpl R. Structure and biological activity of basement membrane proteins. Eur J Biochem 1989; 180: 487–503.

    Article  CAS  PubMed  Google Scholar 

  10. Kallunki P, Tryggvason K. human basement membrane heparan sulfate proteoglycan core protein: A 467-kD protein containing multiple domains resembling elements of the low density lipoprotein receptor, laminin, neural cell adhesion molecules, and epidermal growth factor. J Cell Biol 1992; 116:559–571.

    Article  CAS  PubMed  Google Scholar 

  11. Schleicher ED, Wagner EM, Olgemöller B, Nerlich AG, Gerbitz KD. Characterization and localization of basement membrane-associated heparan sulphate proteoglycan in human tissues. Lab Invest 1989; 61: 323–332.

    CAS  PubMed  Google Scholar 

  12. Stow JL, Sawada H, Farquhar MG. Basement membrane heparan sulfate proteoglycans are concentrated in the laminae rarae and in podocytes of the rat renal glomerulus. Proc Natl Acad Sci USA 1985; 82: 3296–3300.

    Article  CAS  PubMed  Google Scholar 

  13. van den Born J, van den Heuvel PWJ, Bakker MAH, Veerkamp JH, Assmann KJM, Berden JHM. A monoclonal antibody against GBM heparan sulfate induces an acute selective proteinuria in rats. Kidney Int 1992; 41: 115–123.

    Article  PubMed  Google Scholar 

  14. Yamamoto T, Nakamura T, Noble NA, Ruoslahti E, Border WA. Expression of transforming growth factor ß is elevated in human and experimental diabetic nephropa-thy. Proc Natl Acad Sci USA 1993; 90: 1814–1818.

    Article  CAS  PubMed  Google Scholar 

  15. Ruoslahti E. »Extracellular matrix in the regulation of cellular functions.« In Cell to Cell Interaction, Burger MM, Sordat B, Zinkernagel RM, eds. Basel: Karger, 1990; pp 88–98.

    Google Scholar 

  16. d’amore PA. Modes of FGF release in vivo and in vitro Cancer and Metastasis Reviews 1990; 9: 227–238.

    Article  CAS  Google Scholar 

  17. Wright TC, Casellot JJ, Diamond JR, Karnovsky MJ. »Regulation of cellular proliferation by heparin and heparan sulfate.« In Heparin, Lane DA, Lindahl U, eds. London: Edward Arnold, 1989; pp 295–316.

    Google Scholar 

  18. Steffes MW, Østerby R, Chavers B, Mauer, MS. Mesangial expansion as a central mechanism for loss of kidney function in diabetic patients. Diabetes 1989; 38: 1077–1081.

    Article  CAS  PubMed  Google Scholar 

  19. Østerby R, Gundersen HJG. Glomerular size and structure in diabetes mellitus: early abnormalities. Diabetologia 1975; 11: 225–259.

    Article  PubMed  Google Scholar 

  20. Spiro RG. »Pathogenesis of diabetic glomerulopathy: a biochemical view.« In The Kidney and Hypertension in Diabetes Mellitus, Mogensen CE, ed. Boston: Martinus Nijhoff Publishing, 1988; pp 117–130.

    Google Scholar 

  21. Mohan PS, Carter WG, Spiro RG. Occurrence of type VI collagen in extracellular matrix of renal glomeruli and its increase in diabetes. Diabetes 1990; 39: 31–37.

    Article  CAS  PubMed  Google Scholar 

  22. Shimomura H, Spiro RG. Studies on macromolecular components of human glomerular basement membrane and alterations in diabetes: decreased levels of heparan sulfate proteoglycan. Diabetes 1987; 36: 374–381.

    Article  CAS  PubMed  Google Scholar 

  23. Parthasarathy N, Spiro RG. Effect of diabetes on the glycosaminoglycan component of the human glomerular basement membrane. Diabetes 1982; 31: 738–741.

    Article  CAS  PubMed  Google Scholar 

  24. Schleicher E, Wieland OH. Changes of human glomerular basement membrane in diabetes mellitus. Eur J Clin Chem Clin Biochem 1984; 22: 223–227.

    CAS  Google Scholar 

  25. Haneda M, Kikkawa R, Horide N, Togawa M, Koya D, Kajiwara N, Ooshima A, Shigeta Y. Glucose enhances type IV collagen production in cultured rat glomerular mesangial cells. Diabetologia 1991; 34: 198–200.

    Article  CAS  PubMed  Google Scholar 

  26. Schaefer RM, Paczek L, Huang S, Teschner M, Schaefer L, Heidland A. Role of glomerular proteinases in the evolution of glomerulosclerosis. Eur J Clin Chem Clin Biochem 1992; 30: 641–646.

    CAS  PubMed  Google Scholar 

  27. Fukui M, Nakamura T, Ebihara I, Shirato I, Tomino Y, Koide H. ECM gene expression and its modulation by insulin in diabetic rats. Diabetes 1992; 41: 1520–1527.

    Article  CAS  PubMed  Google Scholar 

  28. Ceol M, Nerlich A, Baggio B, Anglani A, Sauer U, Schleicher E, Gambaro G. Increased glomerular α1 (IV) collagen expression and deposition in long-term diabetic rats in prevented by chronic glycosminoglycan treatment. Lab Invest 1996; in press.

    Google Scholar 

  29. Flyvbjerg A. Growth factors and diabetic complications. Diabetic Med 1990; 7: 387–390.

    Article  CAS  PubMed  Google Scholar 

  30. Nakamura T, Fukui M, Ebihara I, Osada S, Nakaoka I, Tomino Y, Koide H. mRNA Expression of growth factors in glomeruli from diabetic rats. Diabetes 1993; 42: 450–456.

    Article  CAS  PubMed  Google Scholar 

  31. Border WA, Okuda S, Languino LR, Sporn MB, Ruoslahti E. Suppression of experimental glomerulonephritis by antiserum against transforming growth factor beta 1. Nature 1990; 346: 371–374.

    Article  CAS  PubMed  Google Scholar 

  32. Sharma K, Ziyadeh FN. Perspectives in diabetes. Hyperglycemia and diabetic kidney disease. The case for transforming growth factor-β as a key mediator. Diabetes 1995; 44: 1139–1146.

    Article  CAS  PubMed  Google Scholar 

  33. Kolm V, Olgemöller B, Sauer U, Schleicher E. High glucose-induced increase in production of heparan sulfate proteoglycan by mesangial cells is mediated by autocrine transforming growth factor β1 (TGF-β1,). Am J Physiol 1996; in press.

    Google Scholar 

  34. Kern TS, Engerman TL. Arrest of glomerulopathy in diabetic dogs by improved diabetic control. Diabetologia 1990; 21: 178–183.

    Google Scholar 

  35. Larkins RG, Dunlop ME. The link between hyperglycaemia and diabetic nephropathy. Diabetologia 1992; 35: 499–504.

    Article  CAS  PubMed  Google Scholar 

  36. Ayo SH, Radnik RA, Glass IIWF, Garoni JA, Rampt ER, Appling DR, Kreisberg JI. Increased extracellular matrix synthesis and mRNA in mesangial cells grown in high-glucose medium. Am J Physiol 1990; 260: F185–F191.

    Google Scholar 

  37. Olgemöller B, Schwaabe S, Gerbitz KD, Schleicher ED. Elevated glucose decreases the content of a basement membrane associated proteoglycan in proliferating mesangial cells. Diabetologia 1992; 35: 183–186.

    Article  PubMed  Google Scholar 

  38. Danne T, Spiro MJ, Spiro RG. Effect of high glucose on type IV collagen production by cultured glomerular epithelial, endothelial, and mesangial cells. Diabetes 1993; 42: 170–177.

    Article  CAS  PubMed  Google Scholar 

  39. Takeuchi A, Throckmorton DC, Brogden AP, Yoshizawa N, Rasmussen H, Kashgarian M. Periodic high extracellular glucose enhances production of collagens III and IV by mesangial cells. Am Physiol Soc 1995; 268: F13–F19.

    CAS  Google Scholar 

  40. Heilig CW, Concepcion LA, Riser BL, Freytag SO, Zhu M, Cortes P. Overexpression of glucose transporters in rat mesangial cells cultured in a normal glucose milieu mimics the diabetic phenotype. J Clin Invest 1995; 96: 1802–1814.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Wolf G, Sharma K, Chen Y, Ericksen M, Ziyadeh FN. High glucose-induced proliferation in mesangial cells is reserved by autocrine TGF-ß. Kidney Int 1992; 42: 647–656.

    Article  CAS  PubMed  Google Scholar 

  42. McClain DA, Paterson AJ, Roos MD, Wei X, Kudlow JE. Glucose and glucosamine regulate growth factor gene expression in vascular smooth muscle cells. Proc Natl Acad Sci USA 1992; 89: 8150–8154.

    Article  CAS  PubMed  Google Scholar 

  43. Ayo SH, Radnik R, Garoni JA, Troyer DA, Kreisberg JA. High glucose increases diacylglycerol mass and activates protein kinase C in mesangial cells. Am J Physiol 1991; 261: F571–F577.

    CAS  PubMed  Google Scholar 

  44. Guzman NJ, Crews FT. Regulation of inositol transport by glucose and protein kinase C in mesangial cells. Kidney Int 1992; 42: 33–40.

    Article  CAS  PubMed  Google Scholar 

  45. Craven PA, DeRubertis FR. Protein kinase C is activated in glomeruli from streptozotocin diabetic rats. Possible mediation by glucose. J Clin Invest 1989; 83: 1667–1675.

    Article  CAS  Google Scholar 

  46. Ledbetter SR, Copeland EJ, Noonan D, Vogeli G, Hassel JR. Altered steady-state in mRNA levels of basement membrane proteins in diabetic mouse kidneys and thromboxane synthase inhibition. Diabetes 1990; 39: 196–203.

    Article  CAS  PubMed  Google Scholar 

  47. Brownlee M, Cerami A, Vlassara H. Advanced glucosylation end products in tissue and the biochemical basis of diabetic complications. N Engl J Med 1988; 318: 1315–1321.

    Article  CAS  PubMed  Google Scholar 

  48. Vogt BW, Schleicher ED, Wieland OH. ε-aminolysine bound glucose in human tissues obtained at autopsy: increase in diabetes mellitus. Diabetes 1982; 31: 1123–1127.

    Article  CAS  PubMed  Google Scholar 

  49. Ledl F, Schleicher E. New aspects of the Maillard reaction in foods and in the human body. Angew Chem Intern Ed Engl 1990; 29: 565–594.

    Article  Google Scholar 

  50. Vlassara H, Brownlee M, Cerami A. Noval macrophage receptor for glucose-modified proteins is distinct from previously described scavenger receptors. J Exp Med 1986; 164: 1301–1309.

    Article  CAS  PubMed  Google Scholar 

  51. Doi T, Vlassara H, Kirstein M, Yamada Y, Striker GE, Striker LJ. Receptor-specific increase in extracellular matrix production in mouse mesangial cells by advanced glycosylation end products is mediated via platelet-derived growth factor. Proc Natl Acad Sci USA 1992; 89: 2873–2877.

    Article  CAS  PubMed  Google Scholar 

  52. Silbiger S, Crowley S, Shan Z, Brownlee M, Satriano J, Schlöndorff D. Nonenzymatic glycation of mesangial matrix and prolonged exposure of mesangial matrix to elevated glucose reduces collagen synthesis and proteoglycan charge. Kidney Int 1993; 43: 853–864.

    Article  CAS  PubMed  Google Scholar 

  53. Sell DR, Carlson EC, Monnier VM. Differential effects of type 2 (non-insulin-dependent) diabetes mellitus on pentosidine formation in skin and glomerular basement membrane. Diabetologia 1993; 36:936–941.

    Article  CAS  PubMed  Google Scholar 

  54. Greene D. The pathogenesis and its prevention of diabetic neuropathy and nephropathy. Metabolism 1988; 37: suppl. 1:25–29.

    Article  CAS  PubMed  Google Scholar 

  55. Schmolke M, Schleicher E, Guder WG. Renal sorbitol, myo-inositol and glycerophosphorylcholine in streptozotocin-diabetic rats. Eur J Clin Chem Clin Biochem 1992; 30: 607–614.

    CAS  PubMed  Google Scholar 

  56. Olgemöller B, Schwaabe S, Schleicher ED, Gerbitz KD. Competitive inhibition by glucose of myoinositol incorporation into cultured porcine mesangial cells. Biophys Biochem Acta 1990; 1052: 47–52.

    Article  Google Scholar 

  57. Li W, Chan LS, Khatami M, Rockey JH: Non-competitive inhibition of myo-inositol transport in cultured bovine retinal capillary pericytes by glucose and reversal by sorbinil. Biochim Biophys Acta 1986; 857: 198–208.

    Article  CAS  PubMed  Google Scholar 

  58. Olgemöller B, Schleicher E, Schwaabe S, Gerbitz KD. Upregulation of myo-inositol transport compensates for competitive inhibition by glucose. Diabetes 1993; 42: 1119–1125.

    Article  PubMed  Google Scholar 

  59. McCaleb ML, McKean ML, Hohman TC, Laver N, Robinson WG. Intervention with aldose reductase inhibitor, tolrestat, in renal and retinal lesions of streptozotocin diabetic rats. Diabetologia 1991; 34: 659–701.

    Article  Google Scholar 

  60. Schleicher E, Ceol M, Sauer U, Nerlich A, Baggio B, Anglani F, Gambaro G. TGF-β1 renal overexpression in long-term diabetic rats and in high glucose mesangial cell cultures: Inhibition by heparin (Abstract). Diabetologia 1996; 39: Suppl. 1: A43.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schleicher, E.D. (1996). Biochemical Aspects of Diabetic Nephropathy. In: Mogensen, C.E. (eds) The Kidney and Hypertension in Diabetes Mellitus. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6749-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6749-0_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-6751-3

  • Online ISBN: 978-1-4757-6749-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics