Skip to main content

Generation and Detection of Subpoissonian Fields in Micromasers

  • Chapter
  • 257 Accesses

Part of the book series: NATO ASI Series ((NSSB,volume 190))

Abstract

Subpoissonian fields, and in particular number states of the electromagnetic field, exhibit intensity fluctuations below the classical limit. The last few years have witnessed considerable interest in the generation of such states. To our knowledge, the first observation of subpoissonian fields was performed by Short and Mandel1 in single-atom resonance fluorescence, following a prediction of Carmichael and Walls.2 More recently, Saleh and Teich3 and Walker and Jakeman4 have produced subpoissonian fields by using antibunched electron sources and detection-event-triggered deadtimes in light beams, respectively. An important technological breakthrough was achieved by Machida et al,5 who demonstrated subpoissonian (or intensity squeezed) fields in a pump-noisesuppressed semiconductor laser. This method is closely related to the generation of subpoissonian light in a micromaser6 as well as to the recent proposal of a squeezed-pump laser by Marte and Walls.7 High number states of the electromagnetic field were recently generated by Walther8 following a prediction by Filipowicz et al.9

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Short and L. Mandel, Phys. Rev. Lett. 51, 384 (1983).

    Article  ADS  Google Scholar 

  2. H. J. Carmichael and D. F. Walls, J. Phys. B9, L43 and 1199 (1976).

    Google Scholar 

  3. M. C. Teich and B. E. A. Saleh, J. Opt. Soc. Am. B2, 275 (1985).

    Google Scholar 

  4. J. G. Walker and E. Jakeman, Optica Acta 32. 1303 (1985)

    Article  Google Scholar 

  5. S. Machida, Y. Yamamoto and Y. Itaya, Phy. Rev. Lett. 58, 1000 (1987).

    Article  ADS  Google Scholar 

  6. P. Filipowicz, J. Javanainen, and P. Meystre, Phys. Rev. A34, 3077 (1986).

    Google Scholar 

  7. M. A. M. Marte and D. F. Walls, preprint (1987).

    Google Scholar 

  8. H. Walther, private communication (1987).

    Google Scholar 

  9. P. Filipowicz, J. Javanainen and P. Meystre, J. Opt. Soc. Am. B3, 906 (1986).

    Google Scholar 

  10. D. Meschede, H. Walther and G. Müller, Phys. Rev. Lett. 54, 551 (1985).

    Article  ADS  Google Scholar 

  11. J. Krause, M. O. Scully and H. Walther, Phys. Rev. A34, 2032 (1986).

    Google Scholar 

  12. M. Brune, J. M. Raimond and S. Haroche, Phys. Rev. A35, 154 (1987).

    Article  ADS  Google Scholar 

  13. L. Davidovich, J. M. Raimond, M. Brune and S. Haroche, Phys. Rev. A36, 3771 (1987).

    Google Scholar 

  14. M. Brune, J. M. Raimond, P. Goy, L. Davidovich and S. Haroche, Phys. Rev. Lett. 59, 1899 (1987).

    Article  ADS  Google Scholar 

  15. P. Meystre, Opt. Letters 12, 669 (1987).

    Article  ADS  Google Scholar 

  16. P. Meystre and E. M. Wright, Phys. Rev. A to be published.

    Google Scholar 

  17. W. E. Lamb, Jr., “Quantum Mechanical Amplifiers”,Vol. 2 of Lectures in Theoretical Physics,W. Brittin and D. W. Downs, eds. (Interscience, New York, 1%0).

    Google Scholar 

  18. M. Sargent III, M. O. Scully and W E Lamb, Jr, Laser Physics (Addison Wesley, Reading, Mass 1974), Chap. 17.

    Google Scholar 

  19. P. Filipowicz, J. Javanainen, and P. Meystre, “Why is laser light coherent ? Photon statistics in coherently driven oscillators” in Coherence, Cooperation and Fluctuations,F. Haake, L. M. Narducci, and D. F. Walls, eds. (Cambridge University Press, Cambridge 1986), p. 206.

    Google Scholar 

  20. E. T. Jaynes and F. W. Cummings, Proc. IEEE 51, 89 (1963).

    Article  Google Scholar 

  21. A. O. Caldeira and A. J. Leggett, Phys. Rev. A31, 1059 (1985)

    Article  ADS  Google Scholar 

  22. D. F. Walls and G. J. Milburn, Phys. Rev. A31, 2403 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  23. C. M. Savage and D. F. Walls, Phys. Rev. A32, 2316 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  24. G. Milburn, “Quantum coherences in randomly kicked quantum systems”,submitted to Phys. Rev. A.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Meystre, P. (1989). Generation and Detection of Subpoissonian Fields in Micromasers. In: Tombesi, P., Pike, E.R. (eds) Squeezed and Nonclassical Light. NATO ASI Series, vol 190. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6574-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6574-8_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-6576-2

  • Online ISBN: 978-1-4757-6574-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics