Skip to main content

Magnetically Targeted Microspheres for Intracavitary and Intraspinal Y-90 Radiotherapy

  • Chapter
Scientific and Clinical Applications of Magnetic Carriers

Abstract

Targeted approaches to radiotherapy using long-range ß-emitting isotopes linked to biologically selective molecules such as antibodies have shown limited success, primarily due to the relatively small amounts of radioactive material that actually reach the tumor sites. Tissuecompatible magnetic microspheres, however, can incorporate very high concentrations of radioactive material and can be maneuvered within the body through the use of an external magnetic field like that generated by a clinical MRI machine. Magnetic microspheres (MMS), 10–30 gm in diameter, were prepared from poly (lactic acid) by a solvent-evaporation method, contained 30 weight% magnetite and were loaded shortly before injection with the ß-emitting radioisotope 90Y. This radiopharmaceutical was tested in vivo in two animal models. The results from the subcutaneous mouse lymphoma model are promising and show that the locally concentrated magnetic microspheres are able to eradicate more than half of the tumors. The results from an intraspinal glioblastoma model in rats, however, failed to show a significant difference between magnetically targeted radioactive microspheres and radioactive microspheres which had not been subjected to a magnetic field. Nonetheless, both groups of radioactively treated rats lived significantly longer than animals injected with non-radioactive microspheres. Higher magnetic fields and field gradients and more susceptible, smaller magnetic microspheres might be required to achieve intraspinal magnetic targeting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gupta PK and Hung CT (1989).Magnetically controlled targeted micro-carrier systems. Life Sci. 44 175–186.

    Article  Google Scholar 

  2. Jain RK (1991). Invited Review: Haemodvnamic and transport barriers to the treatment of solid tumours. Int. J. Radial. Biol. 60 85–100.

    Article  Google Scholar 

  3. Clarke SEM (1994). Antitumor treatment: Radionuclide therapy in oncology. Cancer Treat. Rev. 20 51–71.

    Article  Google Scholar 

  4. Allen BJ and Blagojevic N (1996). Alpha-and beta-emitting radiolanthanides in targeted cancer therapy: The potential role of terbium-149. Nuclear Medicine Communications 17 40–47.

    Article  Google Scholar 

  5. Andrews JC, Walker SC, Ackermann Ri, et al (1994). Hepatic radioembolization with Yttrium-90 containing glass microspheres: Preliminary results and clinical follow up. J. Nucl. Med. 35 1637–1644.

    Google Scholar 

  6. Ehrhardt GJ and Day DE (1987). Therapeutic use of Y microspheres. Nucl. Med. Biol. 14 233–242.

    Google Scholar 

  7. Stucki G, Bozzone P, Treuer E, et al (1993). Efficacy and safety of radiation synovectomy with Yttrium-90: A retrospective long-term analysis of 164 applications in 82 patients. Brit. J. Rheumatol. 32 383–386.

    Article  Google Scholar 

  8. Rowlinson G and Epenetos AA (1992). Targeted delivery of biologic and other antineoplastic agents. Current Opinion in Oncology 4 1142–1148.

    Article  Google Scholar 

  9. Persaud RD (1988). Biting the magic bullet. Radiolabelled monoclonal antibodies: The next great step forward in the diagnosis and treatment of cancer Medical Hypotheses 27 245–251.

    Article  Google Scholar 

  10. Bradley EW, Chan PC and Adelstein Si (1975). The radiotoxicity of iodine-125 in mammalian cells. Effects on the survival curve of radioiodine incorporated into DNA. Radiat. Res. 64 555–563.

    Article  Google Scholar 

  11. Sahu SK, Kassis AI, Makrigiorgos GM, et al (1995). The effects ofIndium-111 decay on pBR322 DNA. Radiat. Res. 141 193–198.

    Article  Google Scholar 

  12. Humm JL, Howell RW and Rao DV (1994). Dosimetry of Auger-electron-emitting radionuclides: Report No. 3 ofAAPM nuclear medicine task group No. 6 Med. Phys. 21 1901–1915.

    Article  Google Scholar 

  13. Howell RW, Kassis AI, Adelstein SJ, et al (1994). Radiotoxicity of platinum-195m-labeled trans-platinum(II) in mammalian cells. Radiat. Res. 140 55–62.

    Article  Google Scholar 

  14. Macklis RM, Kinsey BM, Kassis AI, et al (1988). Radioimmunotherapy with alpha-particle-emitting immunoconjugates. Science 240 1024–1026.

    Article  ADS  Google Scholar 

  15. Zalutsky MR, Garg PK, Friedman HS and Bigner DD (1989). Labeling monoclonal antibodies and F(ab’) 1 fragments with the a-particle-emitting nuclide astatine-211: Preservation of immunoreactivity and in vivo localizing capacity. Proc. Natl. Acad. Sci. USA 86, 7149–7153.

    Article  ADS  Google Scholar 

  16. Junghans RP, Dobbs D, Brechbiel MW, et at (1993). Pharmacokinetics and bioactivity of 1,4,7,10-tetraazacyclododecane N,N’,N’’,N’’’-tetraacetic acid (DOTA)-bismuth-conjugated anti-Tac antibody for a-emitter 212 Bi therapy. Cancer Res. 53, 5683–5689.

    Google Scholar 

  17. Feinendegen LE and McClure JJ (1996). Workshop: Alpha Emitters for medical therapy. DOE/NE-0113.

    Google Scholar 

  18. Häfeli UO, Sweeney SM, Beresford BS, et al (1994). Biodegradable magnetically directed Y-microspheres: Novel agents for targeted intracavitary radiotherapy. J. Biomed. Mat. Res. 28 901–908.

    Article  Google Scholar 

  19. Wise DL, Fellmann TD, Sanderson JE and Wentworth RL (1979). Lactic/glycolic acid polymers. In Drug carriers in biology and medicine. Gregoriadis G (Ed), Academic Press, London, pp. 237–270.

    Google Scholar 

  20. Chu CC (1985). The degradation and biocompatibility of suture materials. In CRC critical reviews in bio-compatibility. Williams DF (Ed), CRC Press, Boca Raton, Vol. 1, pp. 261–322.

    Google Scholar 

  21. Okada H and Toguchi H (1995). Biodegradable microspheres in drug delivery. Crit. Rev. Ther. Drug Carr. Sys. 12 1–99.

    Article  Google Scholar 

  22. Eldridge JH, Staas JK, Chen D, et al (1993). New advances in vaccine delivery systems. Seminars in Hematology 30 Suppl. 4, 16–25.

    Google Scholar 

  23. Tanguay JF, Zidar JP, Phillips HR and Stack RS (1994). Current status of biodegradable stems. Cardiology Clinics 12, 699–713.

    Google Scholar 

  24. Hnatowich DJ, Chinol M, Siebecker DA, et al (1988). Patient biodistribution of intraperitoneally administered Y-labeled antibody J. Nucl. Med. 29 1428–1434.

    Google Scholar 

  25. Wang S, Quadri SM, Tang XZ, et al (1995). Liver toxicity induced by combined external-beam irradiation and radioimmunoglobulin therapy. Radiat. Res. 141 294–302.

    Article  Google Scholar 

  26. Herpst JM, Klein JL, Leichner PK, et al (1995). Survival of patients with resistant Hodgkin’s disease after polyclonal Yttrium-90 labeled antiferritin treatment. J. Clin. Oncol. 13 2394–2400.

    Google Scholar 

  27. Hopkins K, Chandler C, Bullimore J, et al (1995). A pilot study of the treatment of patients with recurrent malignant gliomas with intratumor Yttrium-90 radioimmunoconjugates. Radiother. Oncol. 34 121–131.

    Article  Google Scholar 

  28. Humm JL and Cobb LM (1990). Nonuniformity of tumor dose in radioimmunotherapy. J. Nucl. Med. 31 75–83.

    Google Scholar 

  29. Berger MJ (1971). Distribution of absorbed dose around point sources of electrons and beta particles in water and other media. J. Nucl. Med. 12 Suppl. 5, 5–23.

    ADS  Google Scholar 

  30. Berger MJ (1973). Improved point kernels for electron and beta ray dosimetry. NBSIR, 73–107.

    Google Scholar 

  31. Häfeli UO, Sweeney SM, Beresford BA, et al (1995). Effective targeting of magnetic radioactive Y-microspheres to tumor cells by an externally applied magnetic field. Preliminary in vitro and in vivo results. Nucl. Med. Biol. 22, 147–155.

    Article  Google Scholar 

  32. Tomayko MM and Reynolds CP (1989). Determination of subcutaneous tumor size in athymic (nude) mice. Cancer Chemother. Pharmacol. 24 148–154.

    Article  Google Scholar 

  33. Kooistra KL, Rodriguez M, Powis G, et al (1986). Development of experimental models for meningeal neoplasia using intrathecal injection of 9L gliosarcoma and walker 256 carcinosarcoma in the rat. Cancer Res. 46, 317–323.

    Article  Google Scholar 

  34. Deutsch M (1988). Medulloblastoma: Staging and treatment outcome. Int. J. Radial. Oncol. Biol. Phys. 14 1103–1107.

    Article  Google Scholar 

  35. Friedman HS, Oakes WJ, Bigner SH, et al (1991). Medulloblastoma tumor: Biological and clinical perspectives. J. Neuro-Oncol. 11 1–15.

    Article  Google Scholar 

  36. Howard MA, Grady MS, Ritter RC, et al (1989). Magnetic movement of a brain thermoceptor. Neurosurgery 24, 444–448.

    Article  Google Scholar 

  37. Grady MS, Howard MA, Broaddus WC, et al (1990). Magnetic stereotaxis: A technique to deliver stereo-tactic hyperthermia. Neurosurgery 27 1010–1016.

    Article  Google Scholar 

  38. Stabin MG (1996). MIRDOSE: Personal computer software for internal dose assessment in nuclear medicine. J. Nucl. Med. 37 538–546.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Häfeli, U.O., Pauer, G.J., Roberts, W.K., Humm, J.L., Macklis, R.M. (1997). Magnetically Targeted Microspheres for Intracavitary and Intraspinal Y-90 Radiotherapy. In: Häfeli, U., Schütt, W., Teller, J., Zborowski, M. (eds) Scientific and Clinical Applications of Magnetic Carriers. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6482-6_38

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6482-6_38

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3283-9

  • Online ISBN: 978-1-4757-6482-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics