Skip to main content

Abstract

The method presented in this article for the mechanical stimulation of cells via specific receptors was adapted from the method of Wang and Ingber.1,2 Unlike most current methods which apply strain to the cell as a whole, our method is able to determine the specific receptors involved in stress transduction. The stress is applied using ferromagnetic microbeads coated with receptor-specific ligands. After adhesion to cells, the beads are magnetized and then “twisted” using a magnetic field oriented perpendicular to the magnetizing field. This method was applied to osteoblastic cells, and it could be shown that mechanical stress on integrin receptors induces specific tyrosine phosphorylation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wang N, Butler JP, Ingber DE (1993). Mechanotransduction across the cell surface and through the cytoskeleton.Science 260, 1124–1127.

    Article  ADS  Google Scholar 

  2. Wang N, Ingber DE (1995). Probing transmembrane mechanical coupling and cytomechanics using magnetic twisting cytometry.Biochemical Cell Biology 73, 327–335.

    Article  Google Scholar 

  3. Davies PF, Tripathi SC (1993). Mechanical stress mechanisms and the cell.Circulation Research 72, 239–245.

    Article  Google Scholar 

  4. Jones D, Leivseth G, Tenbosch J (1995). Mechano-reception in osteoblast-like cells.Biochemical Cell Biology 73, 525–534.

    Article  Google Scholar 

  5. James NL, Harrison DG, Nerem RM (1995). Effects of shear on endothelial cell calcium in the presence and absence of ATP.FASEB Journal 9, 968–973.

    Google Scholar 

  6. Basdra EK, Huber LA, Komposch G, Papavassiliou AG (1994). Mechanical loading triggers specific biochemical responses in mandibular chondrocytes.Biochimica et Biophysica Acta 1222, 315–322.

    Google Scholar 

  7. Hamasaki K, Nojima Y et al (1995). Stretching mesangial cells stimulates tyrosine phosphorylation of focal adhesion kinase pp125FAK.Biochemical and Biophysical Research Communications 212, 544–549.

    Article  Google Scholar 

  8. Reich KM, Gay CV, Frangos JA (1990). Fluid shear stress as a mediator of osteoblast cyclic adenosine monophosphate production.Journal of Cellular Physiology 143, 100–104.

    Article  Google Scholar 

  9. Lambert CA, Soudant EP, Nusgens BV, Lapiere CM (1992). Pretranslational regulation of extracellular matrix macromolecules and collagenase expression in fibroblasts by mechanical force.Laboratory Investigation 66, 444–451.

    Google Scholar 

  10. Holmvall K, Camper L, Johnasson S, Kimura JH, Lundgren-Akerlund E (1995). Chondrocyte and chondrosarcoma cell ‘ntegrins with affinity for collagen type II and their response to mechanical stress.Experimental Cell Research 221, 496–503.

    Article  Google Scholar 

  11. Buckley MJ, Banes AJ, Jordan RD (1990). The effects of mechanical strain on osteoblasts in vitro.Journal of Maxillofacial Surgery 48, 276–282.

    Article  Google Scholar 

  12. Barbee K (1995). Changes in surface topography in endothelial monolayers with time at confluence: influence on subcellular shear stress distribution due to flow.Biochemical Cell Biology 73, 501–505.

    Article  ADS  Google Scholar 

  13. Kimmel DB (1993). A paradigm for skeletal strength homeostasis.Journal of Bone and Mineral Research 8, Suppl. 2, S515 - S522.

    Google Scholar 

  14. Ruoslahti E (1991). Integrins.Journal of Cinical Investigation 87, 1–5.

    Article  Google Scholar 

  15. Albelda SM, Buck CA (1990). Integrins and other cell adhesion molecules.FASEB Journal 4, 2868–2880.

    Google Scholar 

  16. Hynes RO (1992). Integrins: Versatility, modulation and signaling in cell adhesion.Cell 69, 11–25.

    Article  Google Scholar 

  17. Giancotti FG, Mainiero F (1994). Integrin-mediated adhesion and signaling in tumorgenesis.Biochimica et Biophysica Acta 1198, 47–64.

    Google Scholar 

  18. Yamada KM, Miyamoto S (1995). Integrin transmembrane signaling and cytoskeletal control.Current Opinions in Cell Biology 7, 681–689.

    Article  Google Scholar 

  19. Clark EA, Brugge JS (1995). Integrins and signal transduction pathways: the road taken.Science 268, 233–239.

    Article  ADS  Google Scholar 

  20. Juliano RL, Haskill S (1993). Signal transduction from the extracellular matrix.Journal of Cell Biology 120, 577–585.

    Article  Google Scholar 

  21. Prasad ARS, Logan SA, Nerem RM, Schwartr CJ, Sprague EA (1993). Flow-related response of intracellular inositol phosphate levels in cultured aortic endothelial cells.Circulation Research 72, 827–836.

    Article  Google Scholar 

  22. Klein-Nulend J, van der Plas A, Semeins CM, Ajubi NE, Frangos JA, Nijweide PJ, Burger EH (1995). Sensitivity of osteocytes to biomechanical stress in vitro.FASEB Journal 9, 441–445.

    Google Scholar 

  23. Carvalho RS, Scott JE, Suga DM, Yen EHK (1994). Stimulation of signal transduction pathways in osteoblasts by mechanical strain potentiated by parathyroid hormone.Journal of Bone and Mineral Research 7, 999–1011.

    Google Scholar 

  24. Kollros PR, Bates SR, Mathews MB, Horwitz AL, Glagov S (1987). Cyclic AMP inhibits increased collagen production by cyclically stretched smooth muscle cells.Laboratory Investigation 56, 410–417.

    Google Scholar 

  25. Schwartz MA, Cragoe EJ, Lechene CP (1990). pH regulation in spread cells and round cells.Journal of Biological Chemistry 265, 1327–1332.

    Google Scholar 

  26. Schwartz MA, Lechene C, Ingber DE (1991). Insoluble fibronectin activates the Na/H antiporter by clustering and immobilizing integrin α5β1, independent of cell shape.Proc. Nat. Acad. Sci. USA 88, 7849–7853.

    Article  ADS  Google Scholar 

  27. Banes AJ, Tsuzaki M, Yamamoto J, Fischer T, Brigman B, Brown T, Miller L (1995). Mechanoreception at the cellular level: the detection, interpretation, and diversity of responses to mechanical signals.Biochemical Cell Biology 73, 349–365.

    Article  Google Scholar 

  28. Wallace LM, Ham RG (1976). Stimulation of clonal growth of normal fibroblasts with substrata coated with basic polymers.Journal of Cell Biology 71, 727–734.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bierbaum, S., Notbohm, H. (1997). Magnetomechanical Stimulation of Mesenchymal Cells. In: Häfeli, U., Schütt, W., Teller, J., Zborowski, M. (eds) Scientific and Clinical Applications of Magnetic Carriers. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6482-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6482-6_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3283-9

  • Online ISBN: 978-1-4757-6482-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics