Skip to main content

Macro-Modeling of Solidification. Numerical Approximation Methods

  • Chapter
Science and Engineering of Casting Solidification

Abstract

From the analysis of solidification based on the energy transport equation presented in the previous section, it was seen that analytical solutions of this equation are not always available. Significant simplifying assumptions must be used, assumptions that are many times debilitating to the point that the solution is of little engineering interest. Fortunately, with the development of numerical methods and their application to the solution of partial differential equations, the most complicated equations can be solved numerically. Numerical solutions rely on replacing the continuous information contained in the exact solution of the differential equation with discrete values. Discretization equations are derived from the governing differential equation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Chang S. and D.M. Stefanescu, 1996, Metall. Mater. Trans. A, 27A: 2708

    Article  Google Scholar 

  • Dantzig J.A. and J. W. Wiese, 1985, Metall. Trans. B 16B: 195, 203

    Article  Google Scholar 

  • Hansen P. N., P.R. Sahm, and E. ‘lender, 1993, Trans. AFS 101: 443

    Google Scholar 

  • Hirt C.W. and B.D. Nichols, 1981, J. Computational Physics, 39: 201

    Article  Google Scholar 

  • Jiarong I,.I, B. I,iu, H. Xiang, H. Tong and Y. Xie, 1995, in Proceedings of the 61st World Foundry Congress, International Academic Publishers, Beijing China, p. 41

    Google Scholar 

  • Kreyszig E., 1988, Advanced Engineering Mathematics, John Wiley & Son, New York

    Google Scholar 

  • Kubo K. and R.D. Pehlke, 1985, Metall. Trans 16B: 359

    Article  Google Scholar 

  • Lee Y.W., E. Chang and C.F. Chieu, 1990, Metall. Trans 21B: 715

    Article  Google Scholar 

  • Mehrabian R., M. Keane, and M.C. Flemings, 1970, Metall. Trans 1: 1209

    CAS  Google Scholar 

  • Midea T.C. and D. Schmidt, 1999, Modern Casting,:47

    Google Scholar 

  • Niyama E., T.Uchida, M. Morikawa and S. Saito, 1982, AFS Cast Metal Research J. 7, 3: 52

    Google Scholar 

  • Ohnaka I., 1986, in State of the Art of Computer Simulation of Casting and Solidification Processes, H. Fredriksson ed., Les Editions de Physique, Les Ulis, France, p. 211

    Google Scholar 

  • Ohnaka I, 1993, in Modeling of Casting, Welding and Advanced Solidification Processes VI,Eds. T. S. Piwonka et al., TMS, p.337

    Google Scholar 

  • Ozisic M.N., 1994, Finite Difference Methods In Heat Transfer,CRC Press

    Google Scholar 

  • Patankar, S.V., 1980, Numerical Heat Transfer And Fluid Flow, Hemisphere Publ. Corp., New York

    Google Scholar 

  • Pham Q.T., 1986, International J. of Heat amp; Mass Transf 29: 285

    Article  Google Scholar 

  • Poirier D.R., P.J. Nandapurkar and S. Ganesan, 1991, Metall. Trans 22B: 1129

    Article  Google Scholar 

  • Sahm P.R., 1991, in Numerical Simulation of Casting Solidification in Automotive Applications, C. Kim and C.W. Kim eds., TMS, p. 45

    Google Scholar 

  • Schneider M.C. and C. Beckerman, 1995, Metall. Trans. A 26A: 2373

    Article  Google Scholar 

  • Stefanescu D.M and C.S. Kanetkar, 1985, in Computer Simulation of Microstructure Evolution, D.J. Srolovitz, ed., TMS-AIME, p. 997

    Google Scholar 

  • Stefanescu D.M. and T. S. Piwonka, 1996, in Applications of Computers, Robotics and Automation to the Foundry Industry, Proceedings of the Technical Forum, 62nd World Foundry Congress, Philadelphia, PA, CIATF, American Foundrymen’s Soc., Inc., p. 62

    Google Scholar 

  • Stefanescu D.M., S.R. Giese, T. S. Piwonka and A. Lane, 1996, AFS Trans. 104: 1233

    CAS  Google Scholar 

  • Thomas B., 1993, in Modeling of Casting, Welding and Advanced Solidification Processes VI,Eds. T. S. Piwonka et al., TMS, p.519

    Google Scholar 

  • Upadhya G. and A. J. Paul, 1994, AFS Trans. 102: 69

    CAS  Google Scholar 

  • Van Doormaal J.P. and G.D. Raithby, 1984, Numer. Heat Transfer, 7: 147

    Google Scholar 

  • Zou J., S. Shivkumar and D. Apelian, 1990, AFS Trans. 98: 897

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Stefanescu, D.M. (2002). Macro-Modeling of Solidification. Numerical Approximation Methods. In: Science and Engineering of Casting Solidification. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6472-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6472-7_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-6474-1

  • Online ISBN: 978-1-4757-6472-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics