Skip to main content

Nitroaromatic Munition Compounds: Environmental Effects and Screening Values

  • Chapter
Reviews of Environmental Contamination and Toxicology

Abstract

Nitroaromatic compounds, including 2,4,6-trinitrotoluene (TNT), hexahydro-1,3, 5-trinitro-1,3,5-triazine (RDX), octahydro-1,3,5,7-tetranitro-1,3,5-tetrazocine (HMX), N-methyl-N,2,4,6-tetranitroaniline (tetryl), and associated byproducts and degradation products, were released to the environment during manufacturing and load, assembly, and pack (LAP) processes at U.S. Army Ammunition Plants (AAPs) and other military facilities. As a result of the release of these nitroaromatic compounds into the environment, many AAPs have been placed on the National Priorities List for Superfund cleanup (Fed. Reg. 60:20330). Many of these sites cover a wide expanse of relatively undisturbed land and provide diverse habitats that support a variety of aquatic and terrestrial species. Nitroaromatics are potentially toxic to the indigenous species at these sites and present a significant concern for site remediation. Table 1 presents an overview of ranges of detected concentrations of the nitroaromatic compounds in groundwater, surface water, sediment, and soil at military and manufacturing sites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • ACS (American Chemical Society) (1998) SciFinder Online Information Retrieval Service, American Chemical Society, Columbus, OH.

    Google Scholar 

  • Alvarez MA, Kitts CL, Botsford JL, Unkefer Pi (1995) Pseudomonas aeruginosa strain MA01 aerobically metabolizes the aminodinitrotoluenes produced by 2,4,6-trinitrotoluene nitro group reduction. Can J Microbiol 41: 984–991.

    Google Scholar 

  • Andren RK, Nystron JM, McDonnell RP, Stevens BW (1977) Explosives removal from munitions wastewater. Proc Ind Waste Conf 30: 816–825.

    Google Scholar 

  • ASTM (1980) Standard practice for conducting acute toxicity tests with fishes, macroinvertebrates, and amphibians. E-729–80. American Society for Testing and Materials, Philadelphia, PA.

    Google Scholar 

  • Atkinson R (1987) A structure-activity relationship for the estimation of rate constants for the gas-phase reactions of OH radicals with organic compounds. Int J Chem Kinet 19: 799–828.

    Article  CAS  Google Scholar 

  • ATSDR (Agency for Toxic Substances and Disease Registry) (1994) Toxicological profile for HMX (draft). Public Health Service, U.S. Department of Health and Human Services, Washington, DC.

    Google Scholar 

  • ATSDR (1995a) Toxicological profile for 2,4,6-trinitrotoluene. Public Health Service, U.S. Department of Health and Human Services, Washington, DC.

    Google Scholar 

  • ATSDR (1995b) Toxicological profile for 1,3-dinitrobenzene and 1,3,5-trinitrobenzene (draft). Public Health Service, U.S. Department of Health and Human Services, Washington, DC.

    Google Scholar 

  • ATSDR (1995c) Toxicological profile for RDX. Public Health Service, U.S. Department of Health and Human Services, Washington, DC.

    Google Scholar 

  • ATSDR (1995d) Toxicological profile for tetryl. Public Health Service, U.S. Department of Health and Human Services, Washington, DC.

    Google Scholar 

  • Bailey HC (1982a) Development and testing of a laboratory model ecosystem for use in evaluating biological effects and chemical fate of pollutants. In: Pearson JG, Foster RB, Bishop WE (eds) Aquatic Toxicology and Hazard Assessment, 5th Conference. ASTM STP 766. American Society for Testing and Materials, Philadelphia, PA, pp 221–233.

    Chapter  Google Scholar 

  • Bailey HC (1982b) Toxicity of TNT wastewater to aquatic organisms. Monthly Prog Rep 80. SRI International, Menlo Park, CA. (Cited in van der Schalie 1983.)

    Google Scholar 

  • Bailey HC, Spanggord RJ (1983) The relationship between the toxicity and structure of nitroaromatic chemicals. In: Bishop WE, Cardwell RD, Heidolph BB (eds) Aquatic Toxicology and Hazard Assessment, 6th Symposium. ASTM STP 802. American Society for Testing and Materials, Philadelphia, PA, pp 98–107.

    Chapter  Google Scholar 

  • Bailey HC, Spanggord RJ, Javitz HS, Liu DHW (1985) Toxicity of TNT wastewaters to aquatic organisms. Final Report. Vol. III. Chronic toxicity of LAP wastewater and 2,4,6-trinitrotoluene. AD-A164 282. SRI International, Menlo Park, CA.

    Google Scholar 

  • Banerjee S, Yalkowsky SH, Valvant SC (1980) Water solubility and octanol/water partition coefficients of organics. Limitations of the solubility-partition coefficient correlation. Environ Sci Technol 14: 1227–1230.

    Article  CAS  Google Scholar 

  • Banwart WL, Hassett JJ (1990) Effect of soil amendments on plant tolerance and extractable TNT from TNT contaminated soils. Agron Abstr 83: 33.

    Google Scholar 

  • Bauer JW (ed) (1985) Groundwater monitoring study No. 38–26–0457–86. AMC open buming/open detonation facilities, February 1984—March 1985. U.S. Army Materiel Command, Alexandria, VA.

    Google Scholar 

  • Bel P, Ketcha MM, Pollard DL, Caldwell DJ, Martin JP, Narayanan L, Fisher JW (1994) In vivo metabolism of 1,3,5-trinitrobenzene in rats. In: 42nd Annual Conference of the American Society for Mass Spectrometry and Allied Topics, Chicago, IL, May 29-June 2, 1994.

    Google Scholar 

  • Belkin F, Bishop RW, Sheely MV (1985) Analysis of explosives in water by capillary gas chromatography. J Chromatogr Sci 24: 532–534.

    Google Scholar 

  • Bender ES, Robinson PF, Moore MW, Thornton WD, Asaki AE (1977) Preliminary environmental survey of Holston Army Ammunition Plant, Kingsport, TN. AD-A043 662. U.S. Army Chemical Systems Laboratory, Aberdeen Proving Ground, MD.

    Google Scholar 

  • Bentley RE, Dean JW, Ellis SJ, Hollister TA, LeBlanc GA, Sauter S, Sleight BH (1977a) Laboratory evaluation of the toxicity of cyclotrimethylene trinitramine (RDX) to aquatic organisms. AD A061730. Final Report. EGandG Bionomics, Wareham, MA, for U.S. Army Medical Bioengineering Research and Development Laboratory, Fort Detrick, MD.

    Google Scholar 

  • Bentley RE, LeBlanc GA, Hollister TA, Sleight BH III (1977b) Acute toxicity of 1,3,5,7tetranitro-octahydro-1,3,5,7-tetrazocine (HMX) to aquatic organisms. Final report. AD A061 730. EG and G Bionomics, Wareham, MA.

    Google Scholar 

  • Bentley RE, Petrocelli SR, Suprenant DC (1984) Determination of the toxicity to aquatic organisms of HMX and related wastewater constituents. Part III. Toxicity of HMX, TAX and SEX to aquatic organisms. Final report. AD A172 385. Springborn Bionom-ics, Inc., Wareham, MD.

    Google Scholar 

  • Benya Ti, Cornish HH (1994) Aromatic nitro and amino compounds. In: Patty’s Industrial Hygiene and Toxicology, 4th Ed., Vol. IIB. Wiley, New York.

    Google Scholar 

  • Bollog J-M, Loll MJ (1983) Incorporation of xenobiotics into soil humus. Experentia (Basel) 39: 1221–1231.

    Article  Google Scholar 

  • Boopathy R, Manning J, Montemagno C, Rimkus K (1994) Metabolism of trinitrobenzene by a Pseudomonas consortium. Can J Microbiol 40: 787–790.

    Article  CAS  Google Scholar 

  • Bringmann G, Kuhn R (1959) The toxic effect of waste water on aquatic bacteria, algae, and small crustaceans. Gesundh Ing 80: 115–120.

    CAS  Google Scholar 

  • Bringmann G, Kuhn R (1978) Testing of substances for their toxicity threshold: model organisms Microcystis (Diplocystis) aeruginosa and Scenedesmus quadricauda. Mitt Int Ver Theor Angew Limnol 21: 275–284.

    CAS  Google Scholar 

  • Bringmann G, Kuhn R (1980) Comparison of the toxicity thresholds of water pollutants to bacteria, algae, and protozoa in the cell multiplication inhibition test. Water Res 14: 231–241.

    Article  CAS  Google Scholar 

  • Budavari S, O’Neil MJ, Smith A, Heckelman PE (eds) (1996) The Merck Index, 12th Ed. Merck and Co., Rahway, NJ, pp 461, 553, 554, 1129, 1657, 1658.

    Google Scholar 

  • Bumpus JA, Tatarko M (1994) Biodegradation of 2,4,6-trinitrotoluene by Phanerochaete chrysosporium: identification of initial degradation products and the discovery of a TNT metabolite that inhibits lignin peroxidases. Curr Microbiol 28: 185–190.

    Article  CAS  Google Scholar 

  • Burlinson NE (1980) Fate of TNT in an aquatic environment: Photodecomposition vs. biotransformation. NSWC TR 79–445, AD B045846. Naval Surface Weapons Center, White Oak, Silver Spring, MD.

    Google Scholar 

  • Burlinson NE, Glover DJ (1977) Photochemistry of TNT and related nitrobodies. Quarterly Progress Report No. 14 for 1 October to 31 December 1977. Explosive Chemistry Branch, Naval Surface Weapons Center, White Oak, Silver Spring, MD.

    Google Scholar 

  • Burlinson NE, Kaplan LA, Adams CE (1973) Photochemistry of TNT: investigation of the pink water problem. AD-769 670. National Technical Information Service, Springfield, VA.

    Google Scholar 

  • Burrows D, Dacre JC (1975) Toxicity to aquatic organisms and chemistry of nine selected waterborne pollutants from munitions manufacture-a literature review. AD A010 660. U.S. Army Biomedical Research and Development Laboratory, Fort Detrick, MD.

    Google Scholar 

  • Burrows WD, Chyrek RH, Noss CI (1984) Treatment for removal of munition chemicals from Army industrial wastewaters. In: Lagrega MD, Long DA (eds) (1984) Toxic and Hazardous Wastes: Proceedings of the 16th Mid-Atlantic Industrial Waste Conference, Bucknell University. Technomic Publishing, Lancaster, PA, pp 331–342.

    Google Scholar 

  • Burrows EP, Rosenblatt DH, Mitchell WR, Parmer DL (1989) Organic explosives and related compounds: environmental and health considerations. AD-A210 554. U.S. Army Biomedical Research and Development Laboratory, Fort Detrick, MD.

    Google Scholar 

  • Cameron BD (1986) HMX: toxicokinetics of C-HMX following oral administration to the rat and mouse and intravenous administration to the rat. Final report. AD A171600. U.S. Army Medical Research and Development Command, Fort Detrick, MD.

    Google Scholar 

  • Carpenter DF, McCormick NG, Cornell JH, Kaplan AM (1978) Microbial transformation of C-labeled 2,4,6-trinitrotoluene in an activated sludge system. Appl Environ Microbiol 35: 949.

    PubMed  CAS  Google Scholar 

  • Cataldo DA, Harvey SD, Fellows RJ (1993) The environmental behavior and chemical rate of energetic compounds (TNT, RDX, tetryl) in soil and plant systems. PNL-SA22363. Presented at the 17th Annual Army Environmental RandD Symposium and 3rd USACE Innovative Technology Transfer Workshop, June 22–24, 1993, Williamsburg, VA.

    Google Scholar 

  • Cataldo DA, Harvey SD, Fellows RJ, Bean RM, McVetty BD (1989) An evaluation of the environmental fate and behavior of munitions materiel (TNT, RDX) in soil and plant systems. PNL-7370, AD-A223 546. U.S. Army Medical Research and Development Command, Fort Detrick, MD.

    Book  Google Scholar 

  • Chandler CD, Kohlbeck JA, Bolleter WJ (1972) Continuous TNT process studies. III. Thin-layer chromatographic analysis of oxidation products from nitration. J Chromatogr 64: 123–128.

    Article  CAS  Google Scholar 

  • Checkai RT, Major MA, Nwanguma RO, Amos JC, Phillips CT, Wentsel RS, Sadusky MC (1993) Transport and fate of nitroaromatic and nitramine explosives in soils from open buming/open detonation operations: Milan Army Ammunition Plant (MAAP). AD-A279 145, ERDEC-TR-136. Edgewood Research, Development and Engineering Center, Aberdeen Proving Ground, MD.

    Google Scholar 

  • Cholakis JM, Wong LCK, Van Goethem DL, Minor J, Short R, Spring H, Ellis HV III (1980) Mammalian toxicological evaluation of RDX. Final report. AD A092531, DMD17–78-C-8027. Midwest Research Institute, Kansas City, MO.

    Google Scholar 

  • Clear J, Collins P (1982) Final report for the Iowa Army Ammunition Plant (IAAP). Iowa Army Ammunition Plant, Middletown, IA.

    Google Scholar 

  • Cody TE, Witherup S, Hastings L, Stemmer K, Christian RT (1981) 1,3-Dinitrobenzene: toxic effects in vivo and in vitro. J Toxicol Environ Health 7: 829–848.

    Google Scholar 

  • Cooper JR, Caldwell DJ (1995) Developmental toxicity evaluation of 1,3,5-trinitrobenzene in Sprague-Dawley rats. Final report, U.S. Army, Wright-Patterson AFB, OH. (cited in USEPA, 1977 ).

    Google Scholar 

  • Curtis MW, Ward CH (1981) Aquatic toxicity of forty industrial chemicals: testing in support of hazardous substance spill prevention regulation. J Hydrol 51: 359–367.

    Article  CAS  Google Scholar 

  • Daniele E (1964) Blood clotting alterations in chronic laboratory tetryl poisoning. Folia Med 8: 767–776

    Google Scholar 

  • Deaver GH, Tucker RC, Adams W, McCann M (1986) Midwest site confirmatory survey assessment report for Joliet Army Ammunition Plant. AMXTH-IR-CR 86095. U.S. Army Toxic and Hazardous Materials Agency, Aberdeen Proving Ground, MD.

    Google Scholar 

  • Deneer JW, Seinen W, Hermens, JLM (1988) Growth of Daphnia magna exposed to mix- tures of chemicals with diverse modes of action. Ecotoxicol Environ Saf 15: 72–77.

    Article  PubMed  CAS  Google Scholar 

  • Deneer JW, Sinnige TL, Seinen W, Hermens JLM (1987) Quantitative structure-activity relationships for the toxicity and bioconcentration factor of nitrobenzene derivatives towards the guppy (Poecilia reticulata). Aquat Toxicol 10: 115–127.

    Article  CAS  Google Scholar 

  • Deneer JW, van Leeuwen CJ, Seinen W (1989) QSAR study of the toxicity of nitrobenzene derivatives towards Daphnia magna, Chlorella pyrenoidosa and Photobacterium phosphoreum. Aquat Toxicol 15: 83–98.

    Article  CAS  Google Scholar 

  • Dey S, Godbole SH (1986) Biotransformation of m-dinitrobenzene by Candida pulcherrima. Indian J Exp Biol 24: 29–33.

    CAS  Google Scholar 

  • Dey S, Kanekar P, Godbole SH (1986) Aerobic degradation of m-dinitrobenzene. Indian J Environ Health 29: 118–128.

    CAS  Google Scholar 

  • Di Toro DM (1985) A particle interaction model of reversible organic chemical sorption. Chemosphere 14: 1503–1538.

    Article  Google Scholar 

  • Di Toro DM, Zarba CS, Hansen DJ, Berry WJ, Swartz RC, Cowan CE, Payton SP, Allen HE, Thomas NA, Paquin PR (1991) Technical basis for establishing sediment quality criteria for nonionic organic chemicals using equilibrium partitioning. Environ Toxicol Chem 10: 1541–1583.

    Article  Google Scholar 

  • Dilley JV, Tyson CA, Spanggord RJ, Sasmore DP, Newell GW, Dacre JC (1982) Short-term oral toxicity of 2,4,6-trinitrotoluene in mice, rats and dogs. J Toxicol Environ Health 9: 565–585.

    Article  PubMed  CAS  Google Scholar 

  • Drzyzga O, Gorontzy T, Schmidt A, Blotevogel KH (1995) Toxicity of explosives and related compounds to the luminescent bacterium Vibrio fischeri NRRL-B-11177. Arch Environ Contam Toxicol 28: 229–235.

    Article  CAS  Google Scholar 

  • DuBois FW, Baytos JF (1991) Weathering of explosives for twenty years. LA-11931. Los Alamos National Laboratory, Los Alamos, NM.

    Google Scholar 

  • El-hawari AM, Hodgson JR, Winston JM, Sawyer JM, Hainje M, Lee C-C (1981) Species differences in the disposition and metabolism of 2,4,6-trinitrotoluene as a function of route of administration. Final report. AD A114025. U.S. Army Medical Research and Development Command, Fort Detrick, MD.

    Google Scholar 

  • Envirodyne Engineers, Inc. (1980) Milan Army Ammunition Plant contamination survey. Final report. AD-BO53362. Envirodyne Engineers, Inc., St. Louis, MO.

    Google Scholar 

  • ESE (Environmental Science and Engineering, Inc) (1986) Alabama Army Ammunition Plant remedial investigation final report. U.S. Army Toxic and Hazardous Materials Agency, Installation Restoration Division, Aberdeen Proving Ground, MD.

    Google Scholar 

  • Etnier EL (1986) Water quality criteria for hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). ORNL-6178. Oak Ridge National Laboratory, Oak Ridge, TN. U.S. Army Medical Research and Development Command, Fort Detrick, MD.

    Google Scholar 

  • Everett DJ, Maddock SM (1985) HMX: 13-week toxicity study in mice by dietary administration. AD A171602. Final report to the U.S. Army. Inveresk Research International, Ltd., Musselburgh, Scotland.

    Google Scholar 

  • Everett DJ, Johnson IR, Hudson P, Jones M (1985) HMX: 13-week toxicity study in rats by dietary administration. AD A171601. Final report to the U.S. Army. Inveresk Research International, Ltd., Musselburgh, Scotland.

    Google Scholar 

  • Fati S, Daniele E (1965) Histopathological findings in chronic laboratory poisoning. Fo-lia Med 1:269–276 (in Italian). (Cited in ATSDR 1995d.)

    Google Scholar 

  • Fedoroff BT, Sheffield OE (1966) Cyclotrimethylenetrinitramine, cyclonite or RDX. In: Encyclopedia of Explosives and Related Items. Vol. 3. Picatinny Arsenal, Dover, NJ.

    Google Scholar 

  • Fedoroff BT, Sheffield 0E, Reese EF, Clift GD (1962) Encyclopedia of Explosives and Related Items. PATR 2700. Vol. 2. Picatinny Arsenal, Dover, NJ.

    Google Scholar 

  • Fedoroff BT, Reese EF, Aaronson HA, Sheffield OE, Clift GD (1960) Encyclopedia of Explosives and Related Items. Vol. 1. Picatinny Arsenal, Dover, NJ.

    Google Scholar 

  • Fellows RJ, Harvey SD, Cataldo DA (1992) An evaluation of the environmental fate and behavior of munitions materiel (tetryl and polar metabolites of TNT) in soil and plant systems. AD-A266 548. U.S. Army Medical Research and Development Command, Fort Detrick, MD.

    Google Scholar 

  • Fernando T, Bumpus JA, Aust SD (1990) Biodegradation of TNT (2,4,6-trinitrotoluene) by Phanerochaete chrysosporium. Appl Environ Microbiol 56: 1666–1671.

    PubMed  CAS  Google Scholar 

  • Fitzgerald GP, Gerlogg GC, Skong F (1952) Studies on chemicals with selective toxicity to bluegreen algae. Sewage Ind Wastes 24: 888–896.

    CAS  Google Scholar 

  • Freeman DJ, Colitti OA (1982) Removal of explosives from load-assemble-pack waste- water (pink water) using surfactant technology. Proc Ind Waste Conf 36: 383–394.

    Google Scholar 

  • Funk SB, Roberts DJ, Crawford DL, Crawford RL (1993) Initial-phase optimization for bioremediation of munition compound-contaminated soils. Appl Environ Microbiol 59: 2171–2177.

    PubMed  CAS  Google Scholar 

  • Furedi EM, Levine BS, Sagartz JW, Rac VS, Lish PM (1984a) Determination of the chronic mammalian toxicological effects of TNT: twenty-four month chronic toxicity/ carcinogenicity study of trinitrotoluene (TNT) in the Fischer-344 rat. Final report, phase III. Vol. I. AD-A168 637. U.S. Army Medical Research and Development Command, Fort Detrick, MD. IIT Research Institute, Chicago, IL.

    Google Scholar 

  • Furedi EM, Levine BS, Sagartz JW, Rac VS, Lish PM (1984b) Determination of the chronic mammalian toxicological effects of TNT: twenty-four month chronic toxicity/ carcinogenicity study of trinitrotoluene (TNT) in the B6C3F1 hybrid mouse. Final report, phase IV. Vol. I. AD-A168 754. U.S. Army Medical Research and Development Command, Fort Detrick, MD. IIT Research Institute, Chicago, IL.

    Google Scholar 

  • Goerlitz DF (1992) A review of studies of contaminated groundwater conducted by the U.S. Geological Survey Organics Project, Menlo Park, California, 1961–1990. Environ Sci Pollut Control Ser 4: 295–355.

    CAS  Google Scholar 

  • Goerlitz DF, Franks BJ (1989) Use of on-site high performance liquid chromatography to evaluate the magnitude and extent of organic contaminants in aquifers. Ground Water Monit Rev 9: 122–129.

    Article  CAS  Google Scholar 

  • Grant CL, Jenkins TF, Myers KF, McCormick EF (1995) Holding-time estimates for soils containing explosives residues: comparison of fortification vs. field contamination. Environ Toxicol Chem 14: 1865–1874.

    Article  CAS  Google Scholar 

  • Greene B, Kaplan DL, Kaplan AM (1984) Degradation of pink water compounds in soil-TNT, RDX, HMX. AD-A157 954. U.S. Army Natick Research and Development Center, Natick, MA.

    Google Scholar 

  • Gregory RG, Elliott WG (1987) Remedial Investigation at Louisiana Army Ammunition Plant. Final report. AMXTH-IR-CR-87110. Environmental and Science Engineering, Inc., Gainsville, FL. U.S. Army Toxic and Hazardous Materials Agency, Aberdeen Proving Ground, MD.

    Google Scholar 

  • Grindley J (1946) Toxicity to rainbow trout and minnows of some substances known to be present in waste water discharged to rivers. Ann Appl Biol 33: 103–112.

    Article  PubMed  CAS  Google Scholar 

  • Haderlein SB, Schwarzenbach RP (1993) Adsorption of substituted nitrobenzenes and nitrophenols to mineral surfaces. Environ Sci Technol 27: 316–326.

    Article  CAS  Google Scholar 

  • Hale VQ, Stanford TB, Taft LG (1979) Evaluation of the environmental fate of munitions compounds in soil. AD A034226. U.S. Army Medical Bioengineering Research and Development Laboratory, Fort Detrick, MD. Battelle Columbus Laboratories, Columbus, OH.

    Google Scholar 

  • Hallas LE, Alexander M (1983) Microbial transformation of nitroaromatic compounds in sewage effluent. Appl Environ Microbiol 45: 1234–1241.

    PubMed  CAS  Google Scholar 

  • Hansch C, Leo A (1979) Substituent Constants for Correlation Analysis in Chemistry and Biology. Wiley, New York.

    Google Scholar 

  • Hansch C, Leo AJ (1985) Medchem Project, Issue No. 25, Claremont, CA.

    Google Scholar 

  • Haroun LA, MacDonell MM, Peterson JM (1990) Multimedia assessment of health risks for the Weldon Spring site remedial action project. Proc AWMA Annu Meet 83: 19.

    Google Scholar 

  • Hart ER (1976) Two-year feeding study in rats. Final report. AD A040161. Litton Bionetics, Inc., Kensington, MD. (N00014–73-C-0162, NR202–043.)

    Google Scholar 

  • Harvey SD, Fellows RJ, Cataldo DA, Bean RM (1990) Analysis of 2,4,6-trinitrotoluene and its transformation products in soils and plant tissues by high-performance liquid chromatography. J Chromatogr 518: 361–374.

    Article  CAS  Google Scholar 

  • Harvey SD, Fellows RJ, Cataldo DA, Bean RM (1991) Fate of the explosive hexahydro1,3,5-trinitro-1,3,5-triazine (RDX) in soil and bioaccumulation in bush bean hydroponic plants. Environ Toxicol Chem 10: 845–855.

    Article  CAS  Google Scholar 

  • Harvey SD, Fellows RJ, Campbell JA, Cataldo DA (1992) Analysis of the explosive 2,4,6-trinitrophenylmethylnitramine (tetryl) and its transformation products in soil. J Chromatogr 605: 227–240.

    Article  CAS  Google Scholar 

  • Harvey SD, Fellows RJ, Cataldo DA, Bean RM (1993) Analysis of the explosive 2,4,6trinitrophenylmethylnitramine (tetryl) in bush bean plants. J Chromatogr 630: 167–177.

    Article  Google Scholar 

  • Hermens J, Canton H, Steyger N, Wegman R (1984) Joint effects of a mixture of 14 chemicals on mortality and inhibition of reproduction of Daphnia magna. Aquatic Toxicol 5: 315–322.

    Article  CAS  Google Scholar 

  • Hodgson JR, Winston JM, House WB, El-Hawari AM, Murrill EE, Weigand WJ, Burton W, Lee C-C (1977) Evaluation of difference in mammalian metabolism of trinitrotoluene (TNT) as a function of route of administration and carcinogenesis testing. Annual progress report No. 1. AD BO24821L. U.S. Army Medical Research and Development Command, Washington, DC.

    Google Scholar 

  • Hoffsommer JC, Rosen JM (1972) Analysis of explosives in sea water. Bull Environ Contam Toxicol 7: 177–181.

    Article  CAS  Google Scholar 

  • Hoffsommer JC, Rosen JM (1973) Hydrolysis of explosives in seawater. Bull Environ Contam Toxicol 10: 78–79.

    Article  PubMed  CAS  Google Scholar 

  • Hoffsommer JC, Glover DJ, Rosen JM (1972) Analysis of explosives in sea water and in ocean floor sediment and fauna. AD 757778, NOLTR-72–215. Naval Ordinance Laboratory, White Oak, Silver Springs, MD.

    Google Scholar 

  • Hoffsommer JC, Kaplan LA, Glover DJ, Kubose DA, Dickinson C, Goya H, Kayser EG, Groves CL, Sitzmann ME (1978) Biodegradability of TNT: a three-year pilot plant study. Final report. NSWC/WOL TR77–136, AD A061144. Naval Surface Weapons Center, White Oak, Silver Springs, MD.

    Google Scholar 

  • Howard PH, Jarvis WF, Sage GW (1989) Handbook of environmental fate and exposure data for organic chemicals. Lewis Publishers, Chelsea, MI.

    Google Scholar 

  • Howard PH, Boethling RS, Davis WF (1991) Handbook of environmental degradation rates. Lewis Publishers, Chelsea, MI, pp 454–455. (Cited in ATSDR 1995a.)

    Google Scholar 

  • Howard PH, Santodonato J, Saxena J, Malling J, Greninger D (1976) Investigation of selected potential environmental contaminants: Nitroaromatics. EPA/560/2–76–010. USEPA Office of Toxic Substances, Washington, DC.

    Google Scholar 

  • HSDB (1995a) Hazardous Substances Data Bank. 2,4,6-Trinitrotoluene. MEDLARS Online Information Retrieval System, National Library of Medicine, Bethesda, MD.

    Google Scholar 

  • HSDB (1995b) Hazardous Substances Data Bank. 1,3,5-Trinitrobenzene. MEDLARS Online Information Retrieval System, National Library of Medicine, Bethesda, MD.

    Google Scholar 

  • HSDB (1995c) Hazardous Substances Data Bank. 1,3-Drinitrobenzene. MEDLARS Online Information Retrieval System, National Library of Medicine, Bethesda, MD.

    Google Scholar 

  • HSDB (1995d) Hazardous Substances Data Bank. 2,4-Dinitroaniline. MEDLARS Online Information Retrieval System, National Library of Medicine, Bethesda, MD.

    Google Scholar 

  • HSDB (1995e) Hazardous Substances Data Bank. RDX. MEDLARS Online Information Retrieval System, National Library of Medicine, Bethesda, MD.

    Google Scholar 

  • HSDB (1995f) Hazardous Substances Data Bank. HMX. MEDLARS Online Information Retrieval System, National Library of Medicine, Bethesda, MD.

    Google Scholar 

  • HSDB (1995g) Hazardous Substances Data Bank. Tetryl. MEDLARS Online Information Retrieval System, National Library of Medicine, Bethesda, MD.

    Google Scholar 

  • Jenkins TF (1989) Development of an analytical method for the determination of extractable nitroaromatics and nitramines in soils. Ph.D. thesis. University of New Hampshire, Durham, NH.

    Google Scholar 

  • Jenkins TF, Grant CL (1987) Comparison of extraction techniques for munitions residues in soil. Anal Chem 59: 1326–1331.

    Article  CAS  Google Scholar 

  • Jenkins TF, Leggett DC, Grant CL, Bauer CF (1986) Reversed-phase high-performance liquid chromatographic determination of nitroorganics in munitions wastewater. Anal Chem 58: 170–175.

    Article  CAS  Google Scholar 

  • Jerger DE, Simon PB, Weitzel RL, Schenk JE (1976) Aquatic field surveys at Iowa, Radford, and Joliet Army Ammunition Plants. Vol. III. Microbiological investigations, Iowa and Joliet Army Ammunition Plants. AD AO36778. U.S. Army Medical Research and Development Command, Washington, DC.

    Google Scholar 

  • Jones DS, Hull RN, Suter GW II (1996) Toxicological benchmarks for screening contaminants of potential concern for effects on sediment-associated biota: 1996 revision. ES/ER/TM-95/R2. Oak Ridge National Laboratory, Oak Ridge, TN.

    Google Scholar 

  • Kaye SM (1980a) The dinitro ortho-meta- and para-toluidines. In: Encyclopedia of Explosives and Related Items. Vol. 9. U.S. Army Armament Research and Development Command, Large Caliber Weapons Systems Laboratory, Dover, NJ.

    Google Scholar 

  • Kaye SM (1980b) Tetryl. In: Encyclopedia of Explosives and Related Items. Vol. 9. U.S. Army Armament Research and Development Command, Large Caliber Weapons Systems Laboratory, Dover, NJ.

    Google Scholar 

  • Kayser EG, Burlinson NE (1988) Migration of explosives in soil: analysis of RDX, TNT, and tetryl from a 14C lysimeter study. J Energy Mater 6: 45–71.

    Article  CAS  Google Scholar 

  • Kayser EG, Burlinson NE, Rosenblatt DH (1984) Kinetics of hydrolysis and products of hydrolysis and photolysis of tetryl. AD-A153144, NSWC TR 84–68. Naval Surface Weapons Center (Code R16 ), White Oak, Silver Spring, MD.

    Google Scholar 

  • Kinkead ER, Wolf RE, Flemming CD, Caldwell DJ, Miller CR, Marit GB (1995) Reproductive toxicity screen of 1,3,5-trinitrobenzene administered in the diet of SpragueDawley rats. Toxicol Ind Health 11: 309–323.

    PubMed  CAS  Google Scholar 

  • Kitchens JF, Harward WE, Lauter DM, Wentsel RS, Valentine RS (1978) Preliminary problem definition study of 48 munitions-related chemicals. I. Explosives related chemicals. Final report. AD 066 307. Atlantic Research Corporation, Alexandria, VA.

    Google Scholar 

  • Klausmeier RE, Osmon JL, Walls DR (1973) The effect of trinitrotoluene on microorganisms. Dev hid Microbiol 15: 309–317.

    Google Scholar 

  • Kraus DL, Hendry CD, Keirn MA (1985) U.S. Department of Defense superfund implementation at a former TNT manufacturing facility. In: 6th National Conference on Management of Uncontrolled Hazardous Waste Sites, Washington, DC, November 4–6, 1985. Hazardous Materials Control Research Institute, pp 314–318. (Cited in ATSDR 1993.)

    Google Scholar 

  • Kubose DA, Hoffsommer JC (1977) Photolysis of RDX in aqueous solution. Initial studies. AD A-42199/OST. NTIS, Springfield, VA.

    Google Scholar 

  • Lakings DB, Gan O (1981) Identification or development of chemical analysis methods for plants and animal tissues. AD-A103085. Midwest Research Institute, Kansas City, MO. U.S. Army, Fort Detrick, MD. (Cited in Layton et al. 1987.)

    Google Scholar 

  • Layton D, Mallon B, Mitchell W, Hall L, Fish R, Perry L. Snyder G, Bogen K, Malloch W, Ham C, Dowd P (1987) Conventional weapons demilitarization: a health and environmental effects data base assessment. Explosives and their co-contaminants. Final report, phase H. AD-A220588. Lawrence Livermore National Laboratory, Livermore, CA. U.S. Army Medical Research and Development Command, Frederick, MD.

    Google Scholar 

  • Levine BS, Furedi EM, Gordon DE (1983) Determination of the chronic mammalian toxicological effects of RDX: twenty-four month chronic toxicity/carcinogenicity study of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in the Fischer-344 rat. Phase V, final report. Vol. I. ADA 160 774. IIT Research Institute, Chicago, IL. U.S. Army Medical Research and Development Command, Fort Detrick, Frederick, MD.

    Google Scholar 

  • Levine BS, Furedi EM, Gordon DE, Burns JM, Lish PM (1981) Thirteen week oral (diet) toxicity study of trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and TNT/RDX mixtures in the Fischer-344 rat. AD A108 447. U.S. Army Medical Research and Development Command, Fort Detrick, MD. ITT Research Institute, Chicago, IL.

    Google Scholar 

  • Levine BS, Furedi EM, Gordon DE, Lish PM, Barkley JJ (1984) Subchronic toxicity of trinitrotoluene in Fischer-344 rats. Toxicology 32: 253–265.

    Article  PubMed  CAS  Google Scholar 

  • Levine BS, Rust JH, Barkley JJ, Furedi EM, Lish PM (1990) Six month oral toxicity study of trinitrotoluene in beagle dogs. Toxicology 63: 233–244.

    Article  PubMed  CAS  Google Scholar 

  • Linder RE, Hess RA, Strader LF (1986) Testicular toxicity and infertility in male rats treated with 1,3-dinitrobenzene. J Toxicol Environ Health 19: 477–489.

    Article  PubMed  CAS  Google Scholar 

  • Lindner V (1978) Explosives. In: Kirk-Othmer Encyclopedia of Chemical Technology, 3rd Ed. Vol. 9. Wiley, New York, pp 581–584.

    Google Scholar 

  • Lish PM, Levine BS, Furedi EM, Sagartz EM, Rac VS (1984) Determination of the chronic mammalian toxicological effects of RDX: twenty-four month chronic toxicity/carcinogenicity study of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in the B6C3F1 hybrid mouse. Phase VI. Vol. 1. AD A160774. IIT Research Institute, Chi- cago, IL. U.S. Army Medical Research and Development Command, Frederick, MD.

    Google Scholar 

  • Liu DH, Bailey HC, Pearson JG (1983a) Toxicity of a complex munitions wastewater to aquatic organisms. In: Bishop WE, Cardwell RD, Heidolph BB (eds) Aquatic Toxicology and Hazard Assessment: Sixth Symposium. ASTM STP 802. American Society for Testing and Materials, Philadelphia, PA, pp 135–150.

    Chapter  Google Scholar 

  • Liu DH, Spanggord RI, Bailey HC, Javitz HS, Jones DCL (1983b) Toxicity of TNT wastewaters to aquatic organisms. Final report. Vol. I: Acute toxicity of LAP wastewater and 2,4,6-trinitrotoluene. AD A142 144. SRI International, Menlo Park, CA.

    Google Scholar 

  • Lyman WJ, Reehl WF, Rosenblatt DH (1982) Handbook of Chemical Property Estimation Methods: Environmental Behavior of Organic Compounds. McGraw-Hill, New York.

    Google Scholar 

  • Mabey WR, Tse D, Baraze A, Mill T (1983) Photolysis of nitroaromatics in aquatic systems. I. 2,4,6-Trinitrotoluene. Chemosphere 12: 3–16.

    Article  CAS  Google Scholar 

  • Marvin-Sikkema FD, de Bout JAM (1994) Degradation of nitroaromatic compounds by microorganisms. Appl Microbiol Biotechnol 42: 499–507.

    Article  PubMed  CAS  Google Scholar 

  • Matthews HB, Chopade HM, Smith RW, Burka LT (1986) Disposition of 2,4-dinitroaniline in the male F-344 rat. Xenobiotica 16: 1–10.

    Article  PubMed  CAS  Google Scholar 

  • McCormick NG, Feeherry FE, Levinson HS (1976) Microbial transformation of 2,4,6-trinitrotoluene and other nitroaromatic compounds. Appl Environ Microbiol 31: 949–958.

    PubMed  CAS  Google Scholar 

  • McCormick NG, Cornell JH, Kaplan AM (1981) Biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine. Appl Environ Microbiol 42: 817–823.

    PubMed  CAS  Google Scholar 

  • McCormick NG, Cornell JH, Kaplan AM (1984) The anaerobic biotransformation of RDX, HMX, and their acetylated derivatives. AD-A149 464. U.S. Army Natick Research and Development Center, Natick, MA. U.S. Army Toxic and Hazardous Materials Agency, Aberdeen Proving Ground, MD.

    Google Scholar 

  • McEuen SF, Jacobson CF, Brown CD, Miller MG (1995) Metabolism and testicular toxicity of 1,3-dinitrobenzene in the rat: effect of route of administration. Fundam Appl Toxicol 28: 94–99.

    Article  PubMed  CAS  Google Scholar 

  • McFarlane C, Nolt C, Wickliff C, Pfleeger T, Shimabuku R, McDowell M (1987) The uptake, distribution, and metabolism of four organic chemicals by soybean plants and barley roots. Environ Toxicol Chem 6: 847–856.

    Article  CAS  Google Scholar 

  • McKone TE, Layton DW (1986) Screening the potential risks of toxic substances using a multimedia compartment model: estimation of human exposure. Regul Toxicol Pharmacol 6: 359–380.

    Article  PubMed  CAS  Google Scholar 

  • McLeese DW, Zitko V, Peterson MR (1979) Structure-lethality relationships for phenols, anilines and other aromatic compounds in shrimp and clams. Chemosphere 8: 53–57.

    Article  CAS  Google Scholar 

  • McLellan WL, Hartley WR, Bower ME (1988) Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX). In: Roberts WC, Hartley WR (eds) Drinking Water Health Advisory: Munitions. Office of Drinking Water Health Advisories, U.S. Environmental Protection Agency, Washington, DC, pp 247–273.

    Google Scholar 

  • McNamara BP, Averill HP, Owens EJ (1974) The toxicology of cyclotrimethylenetrinitramine (RDX) and cyclotetra-methylenetetranitramine (HMX) solutions in dimethylsulfoxide (DMSO), cyclohexanone, and acetone. AD-780010. U.S. Army, Aberdeen Proving Ground, MD.

    Google Scholar 

  • Mitchell WR, Dennis WH (1982) Biodegradation of 1,3-dinitrobenzene. J Environ Sci Health A17: 837–853.

    Article  Google Scholar 

  • Mitchell WR, Dennis WH, Burrows EP (1982) Microbial interaction with several munitions compounds: 1,3-dinitrobenzene, 1,3,5-trinitrobenzene, and 3,5-dinitroaniline. AD A116651. U.S. Army Medical Bioengineering Research and Development Laboratory, Fort Detrick, MD.

    Google Scholar 

  • Monnot D, Kennedy D, Cira D, Starkey D (1982) Cornhusker Army Ammunition Plant. Final report. DRXTH-AS-CR-82155. Conducted by Envirodyne Engineers, Inc., St. Louis, MO, for Cornhusker Army Ammunition Plant, Grand Island, NE. U.S. Army Toxic and Hazardous Materials Agency, Aberdeen Proving Ground, MD.

    Google Scholar 

  • Naumova RP, Selivanovskaya SY, Cherepneva lE (1988) Conversion of 2,4,6-trinitrotoluene under conditions of oxygen and nitrate respiration of Pseudomonas fluoresens. Prikl Biokhim Mikrobiol 24: 493–498.

    PubMed  CAS  Google Scholar 

  • Nay MW, Randall CW, King PH (1972) Factors affecting color development during treatment of TNT waste. Ind Wastes 18: 20–29.

    Google Scholar 

  • Nay MW, Randall CW, King PH (1974) Biological treatability of trinitrotoluene manufacturing wastewater. J Water Pollut Control Fed 46: 485–497.

    PubMed  CAS  Google Scholar 

  • Newell EL Jr (1984) Phase 3. Hazardous waste study No. 37–26–0147–84. Summary of AMC open burning/open detonation ground evaluations, November 1981–September 1983. Department of the Army, U.S. Army Environmental Hygiene Agency, Aberdeen Proving Ground, MD.

    Google Scholar 

  • Nystrom DD, Rickert DE (1987) Metabolism and excretion of dinitrobenzenes by male Fischer-344 rats. Drug Metab Dispos 15: 821–825.

    PubMed  CAS  Google Scholar 

  • Opresko DM (1995a) Toxicity summary for 2,4,6-trinitrotoluene. Prepared by Oak Ridge National Laboratory for the U.S. Army Toxic and Hazardous Materials Agency, Aberdeen Proving Ground, MD.

    Google Scholar 

  • Opresko DM (1995b) Review of biomonitoring studies and ecological surveys conducted at U.S. military installations. ORNL/M-4097. Oak Ridge National Laboratory, Oak Ridge, TN.

    Google Scholar 

  • Osmon JL, Klausmeier RE (1972) The microbial degradation of explosives. Dev Ind Microbiol 14: 321–325.

    Google Scholar 

  • Palazzo AJ, Leggett DC (1986) Effect and disposition of TNT in a terrestrial plant. J Environ Qual 15: 49–52.

    Article  CAS  Google Scholar 

  • Parke D (1961) Studies in detoxication. V. The metabolism of m-dinitro[C14C]benzene in the rabbit. Biochem J 78: 262–271.

    PubMed  CAS  Google Scholar 

  • Parmeggiani L, Bartalini E, Sassi C, Perini A (1956) Tetryl occupational diseases: experimental investigations and prevention. Med Lay 47: 293–313.

    CAS  Google Scholar 

  • Parmelee RW, Wentsel RS, Phillips CT, Simini M, Checkai RT (1993) Soil microcosm for testing the effects of chemical pollutants on soil fauna communities and trophic structure. Environ Toxicol Chem 12: 1477–1486.

    Article  CAS  Google Scholar 

  • Parrish FW (1977) Fungal transformation of 2,4-dinitrotoluene and 2,4,6-trinitrotoluene. Appl Environ Microbiol 34: 232–233.

    PubMed  CAS  Google Scholar 

  • Pasti-Grigsby MB, Lewis TA, Crawford DL, Crawford RL (1996) Transformation of 2,4,6-trinitrotoluene (TNT) by actinomycetes isolated from TNT-contaminated and uncontaminated environments. Appl Environ Microbiol 62: 1120–1123.

    PubMed  CAS  Google Scholar 

  • Pathology Associates, Inc. (1994) TNB toxicity evaluation in Peromyscus mice-90 day exposure. Study no. 94–105. Prepared under contract to USEPA, Environmental Systems Monitoring Laboratory, Cincinnati, OH, for U.S. Army Medical Research, Development, Acquisition and Logistics Command (Provisional), Fort Detrick, MD.

    Google Scholar 

  • Patterson JW, Shapira NI, Brown J (1977) Pollution abatement in the military explosives industry. Proc Ind Waste Conf 31: 385–394.

    Google Scholar 

  • Pearson JG, Glennon JP, Barkley JJ, Highfill JW (1979) An approach to the toxicological evaluation of a complex industrial wastewater. In: Marking LL, Kimerle RA (eds) Aquatic Toxicology. ASTM STP 667. American Society for Testing and Materials, Philadelphia, PA, pp 284–301.

    Google Scholar 

  • Pederson GL (1970) Evaluation of toxicity of selected TNT wastes on fish. Phase I: Acute toxicity of alpha-TNT to bluegills. Sanitary engineering special study no. 24007–70/71. AD 725572. U.S. Army Environmental Hygiene Agency, Edgewood Arsenal, MD.

    Google Scholar 

  • Pennington JC (1988a) Soil sorption and plant uptake of 2,4,6-trinitrotoluene. EL-88–12, AD A200 502. U.S. Army Biomedical Research and Development Laboratory, Fort Detrick, MD.

    Google Scholar 

  • Pennington JC (1988b) Plant uptake of 2,4,6-trinitrotoluene, 4-amino-2,6-dinitrotouuene, and 2-amino-4,6-dinitrotoluene using 14C-labeled and unlabeled compounds. EL-8810, AD-A203 690. U.S. Army Biomedical Research and Development Laboratory, Fort Detrick, MD.

    Google Scholar 

  • Pennington JC, Patrick WH Jr (1990) Adsorption and desorption of 2,4,6-trinitrotoluene by soils. J Environ Qual 19: 559–567.

    Article  CAS  Google Scholar 

  • Pereira WE, Short DI, Manigold DB, Roscio PK (1979) Isolation and characterization of TNT and its metabolites in groundwater by gas chromatograph-mass spectrometer-computer techniques. Bull Environ Contam Toxicol 21: 554–562.

    Article  PubMed  CAS  Google Scholar 

  • Philbert MA, Gray AJ, Conners TA (1987) Preliminary investigations into the involvement of the intestinal microflora in CNS toxicity induced by 1,3-dinitrobenzene in male F-344 rats. Toxicol Lett 38: 307–314.

    Article  PubMed  CAS  Google Scholar 

  • Phillips CT, Checkai RT, Wentsel RS (1993) Toxicity of selected munitions and munition-contaminated soil on the earthworm (Eisenia foetida). AD-A264 408. Edgewood Research Development and Engineering Center, Aberdeen Proving Ground, MD.

    Google Scholar 

  • Phillips CT, Checkai RT, Chester NA (1994) Toxicity testing of soil samples from Joliet Army Ammunition Plant, IL. AD-A279 091. Edgewood Research Development and Engineering Center, Aberdeen Proving Ground, MD.

    Google Scholar 

  • Phung HT, Bulot MW (1981) Subsurface investigation of metal sludge and explosive disposal pond areas. In: Conway RA, Malloy DC (eds) Hazardous Solid Waste Testing, First Conference. ASTM STP 760. American Society for Testing and Materials, Philadelphia, PA.

    Google Scholar 

  • Preuss A, Fimpel J, Diekert G (1993) Anaerobic transformation of 2,4,6-trinitrotoluene (TNT). Arch Microbiol 159: 345–353.

    Article  PubMed  CAS  Google Scholar 

  • Reddy G, Hampton AEG, Amos J, Major M (1996) Metabolism of 1,3,5-trinitrobenzene (TNB) in vitro. In: Annual Meeting of the Society for Toxicology, March 10–14, Anaheim, CA.

    Google Scholar 

  • Reddy G, Reddy TV, Choudhury H, Daniel FB, Leach G (1997) Assessment of environmental hazards of 1,3,5-trinitrobenzene (TNB). J Toxicol Environ Health 52: 447–460.

    PubMed  CAS  Google Scholar 

  • Reddy TV, Daniel FB, Robinson M, Olson GR, Wiechman B, Reddy G (1994a) Sub-chronic toxicity studies on 1,3,5-trinitrobenzene, 1,3-dinitrobenzene, and tetryl in rats: subchronic toxicity evaluation of 1,3,5-trinitrobenzene in Fischer-344 Rats. AD-A283 663/3/HDM. Prepared by USEPA, Environmental Monitoring Systems Laboratory, Cincinnati, OH, for the the U.S. Army Medical Research, Development, Acquisition and Logistics Command (Provisional), Fort Detrick, MD. National Technical Information Service, Springfield, VA.

    Google Scholar 

  • Reddy TV, Daniel FB, Robinson M (1994b) Subchronic toxicity studies on 1,3,5-trinitrobenzene, 1,3-dinitrobenzene, and tetryl in rats: 14-day toxicity evaluation of Nmethyl-N,2,4,6-tetranitroaniline in Fischer-344 rats. U.S. Environmental Protection Agency, Environmental Monitoring Systems Laboratory, Cincinnati, OH. AD-A284 190/6/HDM. National Technical Information System, Springfield, VA.

    Google Scholar 

  • Reddy TV, Daniel FB, Robinson M, Olson GR, Weichman B, Reddy G (1994c) Sub-chronic toxicity studies on 1,3,5-trinitrobenzene, 1,3-dinitrobenzene, and tetryl in rats: subchronic toxicity evaluation of N-methyl-N-2,4,6-tetranitroaniline (tetryl) in Fischer-344 rats. U.S. Environmental Protection Agency, Environmental Monitoring Systems Laboratory, Cincinnati, OH. National Technical Information Service, Springfield, VA.

    Google Scholar 

  • Reddy TV, Daniel FB, Robinson M (1995) Subchronic toxicity studies on 1,3,5-trinitrobenzene, 1,3-dinitrobenzene, and tetryl in rats: 90-day toxicity evaluation of 1,3-dinitrobenzene (DNB) in Fischer-344 rats. U.S. Environmental Protection Agency, Environmental Monitoring Systems Laboratory, Cincinnati, OH.

    Google Scholar 

  • Reddy TV, Daniel FB, Olson GR, Wiechman BH, Reddy G (1996) Chronic toxicity studies on 1,3,5-trinitrobenzene in Fischer-344 rats. USEPA, Cincinnati, OH. ADA315216, U.S. Army Medical Research and Materiel Command, Frederick, MD.

    Google Scholar 

  • Richards JJ, Junk GA (1986) Determination of munitions in water using macroreticular resins. Anal Chem 58: 723–725.

    Article  Google Scholar 

  • Rosenblatt DH (1981) Environmental risk assessment for four munitions-related contaminants at Savannah army depot activity. Tech Rep 8110. U.S. Army Medical Bioengineering Research and Development Laboratory, Fort Detrick, MD.

    Google Scholar 

  • Rosenblatt DH (1986) Contaminated soil cleanup objectives for Comhusker Army Ammunition Plant. Tech Rep 8603. U.S. Army Medical Bioengineering Research and Development Laboratory, Fort Detrick, MD.

    Google Scholar 

  • Rosenblatt DH, Small MJ (1981) Preliminary pollutant limit values for Alabama Army Ammunition Plant. AD-A104203. U.S. Army Medical Bioengineering Research and Development Laboratory, Fort Detrick, MD.

    Google Scholar 

  • RTECS (1995) 2-Amino-4,6-dinitrotoluene. Registry of Toxic Effects of Chemical Substances, MEDLARS Online Information Retrieval System, National Library of Medicine, Washington, DC.

    Google Scholar 

  • Ryon MG (1987) Water quality criteria for 2,4,6-trinitrotoluene (TNT). ORNL-6304. Oak Ridge National Laboratory, Oak Ridge, TN.

    Google Scholar 

  • Ryon MG, Pal BC, Talmage SS, Ross RH (1984) Database assessment of the health and environmental effects of munition production waste products. ORNL-6018, AD-A145417. U.S. Army Medical Research and Development Command, Fort Detrick, MD.

    Google Scholar 

  • Sample BE, Opresko DM, Suter GW II (1996) Toxicological benchmarks for wildlife. 1996 revision. ES/ER/TM-86183. Oak Ridge National Laboratory, Oak Ridge, TN.

    Google Scholar 

  • Sanocki SL, Simon PB, Weitzel RL, Jerger DE, Schenk JE (1976) Aquatic field surveys at Iowa, Radford and Joliet Army Munition Plants. Final report. Vol. 1. Iowa Army Ammunition Plant. AD A036776. Environmental Control Technology Corporation, Ann Arbor, MI.

    Google Scholar 

  • Schafer EW (1972) The acute oral toxicity of 369 pesticidal, pharmaceutical and other chemicals to wild birds. Toxicol Appl Pharmacol 21: 315–330.

    Article  PubMed  CAS  Google Scholar 

  • Schneider NR, Bradley SL, Andersen ME (1977) Toxicology of cyclotrimethylene-trinitramine: distribution and metabolism in miniature swine. Toxicol Appl Pharmacol 39: 531–541.

    Article  PubMed  CAS  Google Scholar 

  • Schneider NR, Bradley SL, Andersen ME (1978) The distribution and metabolism of cyclotrimethylenetrinitramine (RDX) in the rat after subchronic administration. Toxicol Appl Pharmacol 46: 163–171.

    Article  PubMed  CAS  Google Scholar 

  • Schott CD, Worthley EG (1974) The toxicity of TNT and related wastes to an aquatic flowering plant, Lemna perpusilla Ton. AD-778 158. Aberdeen Proving Ground, MD.

    Google Scholar 

  • Shugart LR, Griest WH, Tan E, Guzman Z, Caton JE, Ho CH, Tomkins BA (1990) TNT metabolites in animal tissues. Final report. ORNIJM-1336. Oak Ridge National Laboratory, Oak Ridge, TN.

    Google Scholar 

  • Sikka HC, Banerjee S, Pack EJ, Appleton HT (1980) Environmental fate of RDX and TNT. U.S. Army Medical Research and Development Command, Fort Detrick, MD. Contract no. DAMD17–77-C-7026. Syracuse Research Corporation, Syracuse, NY.

    Google Scholar 

  • Simini M, Rowland R, Lee EH, Wentsel RW (1992) Detection of stress in Cucumis sativus exposed to RDX using chlorophyll fluorescence. Abstract, 13th Annual Meeting, Society of Environmental Toxicology and Chemistry, Cincinnati, OH, November 8–12, p 48.

    Google Scholar 

  • Simini M, Wentsel RS, Checkai RT, Phillips CT, Chester NA, Major MA, Amos JC (1995) Evaluation of soil toxicity at Joliet Army Ammunition Plant. Environ Toxicol Chem 14: 623–630.

    Article  CAS  Google Scholar 

  • Simmons MS, Zepp RG (1986) Influence of humic substances on photolysis of nitroaromatic compounds in aqueous systems. Water Res 7: 899–904.

    Article  Google Scholar 

  • Simon WW, Blackman GE (1953) Studies in the principles of phytotoxicity. IV. The effects of the degree of nitration on the toxicity of phenol and other substituted benzenes. J Exp Bot 4: 235–250.

    Article  CAS  Google Scholar 

  • Small MJ, Rosenblatt DH (1974) Munitions production products of potential concern as waterborne pollutants: Phase II. AD-919031. U.S. Army Medical Bioengineering Research and Development Laboratory, Fort Detrick, MD.

    Google Scholar 

  • Smith JH, Bomberger DC Jr, Haynes DL (1981) Volatilization rates of intermediate and low volatility chemicals from water. Chemosphere 10: 281–291.

    Article  CAS  Google Scholar 

  • Smock LA, Stonebumer DL, Clark JR (1976) The toxic effects of trinitrotoluene (TNT) and its primary degradation products on two species of algae and the fathead minnow. Water Res 10: 537–543.

    Article  CAS  Google Scholar 

  • Snell TW, Moffat BD (1992) A 2-d life cycle test with the rotifer Brachionus calyciflorus. Environ Toxicol Chem 11: 1249–1257.

    CAS  Google Scholar 

  • Soli G (1973) Microbial degradation of cyclonite (RDX). AD-762 751. Tech Publ 5525. Naval Weapons Center, China Lake, CA.

    Google Scholar 

  • Spain JC (ed) (1995) Biodegradation of Nitroaromatic Compounds. Plenum Press, New York.

    Google Scholar 

  • Spalding RF, Fulton JW (1988) Groundwater munition residues and nitrate near Grand Island, Nebraska, U.S.A. J Contam Hydro 2: 139–153.

    Article  CAS  Google Scholar 

  • Spanggord RJ, Gibson BW, Keck RG, Newell GW (1978) Mammalian toxicological evaluation of TNT wastewaters (“pink water”). Vol. I. Chemistry studies, draft report. AD A059434. U.S. Army Medical Research and Development Command, Fort Detrick, MD.

    Google Scholar 

  • Spanggord RJ, Mill T, Chou TW, Mabey WR, Smith JH, Lee S (1980a) Environmental fate studies on certain munition wastewater constituents. Final report. Phase I: Literature review. SRI International, Menlo Park, CA. AD AO82372. U.S. Army Medical Research and Development Command, Fort Detrick, MD.

    Google Scholar 

  • Spanggord RI, Mabey WR, Mill T, Chou TW Smith JH, Lee S (1980b) Environmental fate studies on certain munition wastewater constituents. Final report. Phase II: Laboratory studies. SRI International, Menlo Park, CA. AD A099256. U.S. Army Medical Research and Development Command, Fort Detrick, MD.

    Google Scholar 

  • Spanggord RJ, Mabey WR, Mill T, Chou T-W, Smith JH, Lee S (1981) Environmental fate studies on certain munition wastewater constituents. Phase III. Part I: Model validation. AD Al29373. U.S. Army Medical Research and Development Command, Fort Detrick, MD.

    Google Scholar 

  • Spanggord RJ, Gibson BW, Keck RG, Thomas DW (1982a) Effluent analysis of wastewater generated in the manufacture of 2,4,6-trinitrotoluene. 1. Characterization study. Environ Sci Technol 16: 229–232.

    Article  CAS  Google Scholar 

  • Spanggord RI, Mabey WR, Chou TW, Haynes DL, Alferness PL, Tee DS, Mill T (1982b) Environmental fate studies of HMX. Phase I, screening studies. Final report. SRI International, Menlo Park, CA.

    Google Scholar 

  • Spanggord RJ, Mabey WR, Chou TW, Lee S, Alferness PL, Tee DS, Mill T (1983) Environmental fate studies of HMX. Phase II, detailed studies. Final report. SRI International, Menlo Park, CA.

    Google Scholar 

  • Spiker JK, Crawford DL, Crawford RL (1992) Influence of 2,4,6-trinitrotoluene (TNT) concentration on the degradation of TNT in explosive-contaminated soils by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 58: 3199–3202.

    PubMed  CAS  Google Scholar 

  • SRC (1995a) Syracuse Research Corporation. (Ko. values cited in HSDB 1995b.)

    Google Scholar 

  • SRC (1995b) Syracuse Research Corporation. Data calculated by SRC, contained in the Hazardous Substances Data Bank (HSDB), MEDLARS Online Information Retrieval System, National Library of Medicine. Retrieved 5/24/95.

    Google Scholar 

  • Stephan CE, Mount DI, Hansen DJ, Gentile JH, Chapman GA, Brungs WA (1985) Guidelines for deriving national water quality criteria for the protection of aquatic organisms and their uses. PB85–227049. U.S. Environmental Protection Agency, Washington, DC.

    Google Scholar 

  • Stidham BR (1979) Analysis of wastewater for organic compounds unique to RDX/ HMX manufacturing and processing. Final report. AD AO85765. Holston Defense Corporation, Kingsport, TN.

    Google Scholar 

  • Stillwell JM, Fischer MA, Margard WL, Matthews MC, Sherwood BE, Stanford TB (1977) Toxicological investigations of pilot treatment plant wastewaters at Holston Army Ammunition Plant. Final report, AD A042601. Battelle Columbus Laboratories, Columbus, OH.

    Google Scholar 

  • Sullivan JH Jr, Putnam HD, Keirn MA, Pruitt BC, Swift DR, McClave JT (1978) Winter field surveys at Volunteer Army Ammunition Plant, Chattanooga, Tennessee. Final report. ADA 055 901. Water and Air Research, Inc., Gainesville, FL.

    Google Scholar 

  • Sullivan JH Jr, Putnam HD, Keirn MA, Pruitt BC Jr, Nichols JC, McClave JT (1979) A summary and evaluation of aquatic environmental data in relation to establishing water quality criteria for munitions unique compounds. AD AO87683. U.S. Army Medical Research and Development Command, Ft. Detrick, MD.

    Google Scholar 

  • Sunahara GI, Renoux AY, Dodard S, Paquet L, Hawari J, Ampleman G, Lavigne J, Thiboutot S (1995) Optimization of extraction procedures for ecotoxicity analyses: use of TNT-contaminated soil as a model (abstract). National Research Council of Canada, Montreal, Quebec, Canada.

    Google Scholar 

  • Suter GW, Tsao CL (1996) Toxicological benchmarks for screening potential contaminants of concern for effects on aquatic biota: 1996 revision. ES/ER/TM-96/R2. Oak Ridge National Laboratory, Oak Ridge, TN.

    Google Scholar 

  • Tabek HH, Chambers CW, Kabler PW (1964) Microbial metabolism of aromatic compounds. I. Decomposition of phenolic compounds and aromatic hydrocarbons by phenol-adapted bacteria. J Bacteriol 87: 910–919.

    Google Scholar 

  • Thompson PL, Ramer LA, Guffey AP, Schnoor JL (1997) Decreased transpiration in poplar trees exposed to 2,4,6-trinitrotoluene. Environ Toxicol Chem 17: 902–906.

    Article  Google Scholar 

  • Todd Q, Finger F, Turner R, Morley D (1989) Delivery Order 8, Louisiana Army Ammunition Plant: updated remedial investigation. Roy F. Weston, West Chester, PA. U.S. Army Toxic and Hazardous Materials Agency, Aberdeen Proving Ground, MD.

    Google Scholar 

  • Toussaint MW, Shedd TR, van der Schalie WH, Leather GR (1995) A comparison of standard acute toxicity tests with rapid-screening toxicity tests. Environ Toxicol Chem 14: 907–915.

    Article  CAS  Google Scholar 

  • Triegel EK, Kolmer JR, Ounanian DW (1983) Solidification and thermal degradation of TNT waste sludges using asphalt encapsulation. In: National Conference on Management of Uncontrolled Hazard Waste Sites. Hazardous Materials Controls Research Institute, Silver Spring, MD, pp 270–274. (Cited in ATSDR 1995a.)

    Google Scholar 

  • Tucker WA, Dose EV, Gensheimer GJ (1985) Evaluation of critical parameters affecting contaminant migration through soils. Final report. U.S. Army Toxic and Hazardous Materials Agency, Aberdeen Proving Ground, MD.

    Google Scholar 

  • U.S. Army (1967) Industrial medical and hygiene considerations: trinitrotoluene (TNT). Regulation No. 40–3, Department of the Army Material Development and Readiness, Command, Alexandria, VA.

    Google Scholar 

  • U.S. Army (1986) Demilitarization of conventional ordnance: priorities for data-base assessments of environmental contaminants. U.S. Army Medical Research and Development Command, Fort Detrick, MD.

    Google Scholar 

  • U.S. Army (1987a) Conventional weapons demilitarization: a health and environmental effects database assessment. AD A2205888. U.S. Army Medical Research and Development Command, Fort Detrick, MD.

    Google Scholar 

  • U.S. Army (1987b) Louisiana Army Ammunition Plant remedial investigation report. AMXTH-IR-CR-87100. U.S. Army Toxic and Hazardous Materials Agency, Aberdeen Proving Ground, MD.

    Google Scholar 

  • U.S. Army (1989) Delivery Order No. 8, Louisiana Army Ammunition Plant: updated remedial investigation. Performed by Roy F. Weston, Inc., West Chester, PA, for the U.S. Army Toxic and Hazardous Materials Agency.

    Google Scholar 

  • U.S. Army (1990) Phase I results report: remedial investigation, manufacturing area, Joliet Army Ammunition Plant, Illinois. Vol. 1. AD B148444. U.S. Army Toxic and Hazardous Materials Agency, Aberdeen Proving Ground, MD.

    Google Scholar 

  • USACHPPM (1994) U.S. Army Center for Health Promotion and Preventive Medicine. Field survey No. 75–23-YS50–94. Health risk assessment of consuming deer from Aberdeen Proving Ground, Maryland (draft). Toxicology Division, USACHPPM, Aberdeen Proving Ground, MD.

    Google Scholar 

  • USEPA (1975) Methods for acute toxicity tests with fish, macroinvertebrates, and amphibians. 660/3–75–009. Ecological Research Series, Washington, DC.

    Google Scholar 

  • USEPA (1979) Toxic substances control act premanufacture testing of new chemical substances. Fed Reg 44: 16257–16259.

    Google Scholar 

  • USEPA (1985) Health and environmental effects profile for dinitrobenzenes. EPA/600/ X-85/361, ECAO-CIN-P141. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH.

    Google Scholar 

  • USEPA (1986) Quality criteria for water, 1986. EPA 440/5–86–001, PB87–226759. National Technical Information Service, Springfield, VA.

    Google Scholar 

  • USEPA (1989) Health and environmental effects document for RDX cyclonite. ECAO- CIN-GO78. Office of Solid Waste and Emergency Response, Washington, DC.

    Google Scholar 

  • USEPA (1993a) Proposed water quality guidance for the Great Lakes System. Fed Reg 58:(72)20802–21047, April 16, 1993. (See also EPA/822/R-93/006, Office of Science and Technology, Washington, DC.)

    Google Scholar 

  • USEPA (1993b) Technical basis for deriving sediment quality criteria for nonionic organic contaminants for the protection of benthic organisms by using equilibrium partitioning. EPA-822-R-93–011. Office of Water, Washington, DC.

    Google Scholar 

  • USEPA (1993c) Integrated risk information system (IRIS) Online. 2,4,6-Trinitrotoluene. Office of Health and Environmental Assessment, Cincinnati, OH.

    Google Scholar 

  • USEPA (1993d) Integrated Risk Information System (IRIS) Online. m-Dinitrobenzene. Office of Health and Environmental Assessment, Cincinnati, OH.

    Google Scholar 

  • USEPA (1993e) Integrated Risk Information Systems (IRIS) Online. Octahydro-1,3,5,7tetranitro-1,3,5,7-tetrazocine. Office of Health and Environmental Assessment, Cincinnati, OH.

    Google Scholar 

  • USEPA (1993f) Integrated Risk Information System (IRIS) Online. RDX. Office of Health and Environmental Assessment, Cincinnati, OH.

    Google Scholar 

  • USEPA (1995a) Great Lakes water quality initiative technical support document for wildlife criteria. EPA-820-B-95–009. Office of Water, Washington, DC.

    Google Scholar 

  • USEPA (1995b) Health effects assessment summary table. Annual FY-1995. EPA 540/ R-95–036. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC.

    Google Scholar 

  • USEPA (1996) Ecotox thresholds. EPA 540/F-95/038, PB95–96324. Intermittent Bull 3: 1–12. Office of Solid Waste and Emergency Response, Washington, DC.

    Google Scholar 

  • USEPA (1997) Integrated Risk Information System (IRIS) Online. 1,3,5-Trinitrobenzene. Office of Health and Environmental Assessment, Cincinnati, OH.

    Google Scholar 

  • van der Schalie W (1983) The acute and chronic toxicity of 3,5-dinitroaniline, 1,3-dinitrobenzene, and 1,3,5-trinitrobenzene to freshwater aquatic organisms. AD A138408. U.S. Army Medical Bioengineering Research and Development Laboratory, Fort Detrick, MD.

    Google Scholar 

  • Veith GD, Macek KJ, Petrocelli SR, Carroll J (1979) An evaluation of using partition coefficients and water solubility to estimate bioconcentration factors for organic chemicals in fish. Fed Reg 44: 15–973.

    Google Scholar 

  • Veith GD, Macek KJ, Petrocelli SR, Carroll J (1980) An evaluation of using partition coefficients and water solubility to estimate bioconcentration factors for organic chemicals in fish. In: Eaton JG; Parrish P, Hendricks AC (eds) Aquatic Toxicology. ASTM STP 707. American Society for Testing and Materials, Philadelphia, PA, pp 116–129.

    Chapter  Google Scholar 

  • von Oepen B, Kordel W, Klein W (1991) Sorption of nonpolar and polar compounds to soils: processes, measurements and experience with the applicability of the modified OECD-guideline 106. Chemosphere 22: 285–304.

    Article  Google Scholar 

  • Walsh ME (1990) Environmental transformation products of nitroaromatics and nitra-mines: literature review and recommendations for analytical development. ADA 220 610. U.S. Army Cold Regions Research and Engineering Laboratory, Hanover, NH.

    Google Scholar 

  • Walsh ME Jenkins TF (1992) Identification of TNT transformation products in soil. ADA 225 308. U.S. Army Corps of Engineers, Cold Regions Research and Engineering Laboratory, Hanover, NH.

    Google Scholar 

  • Weitzel RL, Simon BP, Jerger DE, Schenk JE (1975) Aquatic field study at Iowa Army Ammunition Plant. Final report. AD AO14 300. Environmental Control Technology Corporation, Ann Arbor, MI.

    Google Scholar 

  • Wentzel RS, Hyde RG, Jones WE (1979) Problem definition study on 1,3-dinitrobenzene, 1,3,5-trinitrobenzene and di-n-propyl adipate. AD A099732. U.S. Army Medical Research and Development Command, Fort Detrick, MD.

    Google Scholar 

  • Will ME, Suter GW II (1995a) Toxicological benchmarks for screening potential contaminants of concern for effects on terrestrial plants: 1995 revision. ES/ER/TM-85/ R2. Oak Ridge National Laboratory, Oak Ridge, TN.

    Book  Google Scholar 

  • Will ME, Suter GW II (1995b) Toxicological benchmarks for screening potential contaminants of concern for soil and litter invertebrates and heterotrophic processes. ES/ ER/TM-126/R1. Oak Ridge National Laboratory, Oak Ridge, TN.

    Google Scholar 

  • Won WD, DiSalvo LH, Ng J (1976) Toxicity and mutagenicity of 2,4,6-trinitrotoluene and its microbial metabolites. Appl Environ Microbiol 31: 576–580.

    PubMed  CAS  Google Scholar 

  • Won WD, Heckly RJ, Glover DJ, Hoffsommer JC (1974) Metabolic disposition of 2,4,6-trinitrotoluene. Appl Microbiol 27: 513–516.

    PubMed  CAS  Google Scholar 

  • Yasuda SK (1970) Separation and identification of tetryl and related compounds by two-dimensional thin-layer chromatography. J Chromatogr 50: 453–457.

    Article  CAS  Google Scholar 

  • Yinon J (1990) Toxicity and Metabolism of Explosives. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Yinon J, Hwang DG (1987) Applications of liquid chromatography-mass spectrometry in metabolic studies of explosives. J Chromatogr 394: 253–257.

    Article  PubMed  CAS  Google Scholar 

  • Zambrano A, Mandovano S (1956) Urinary excretion of picric acid, picramic acid, and of sulfoconjugation products in experimental tetryl poisoning. Folia Med 39: 162–171.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Talmage, S.S. et al. (1999). Nitroaromatic Munition Compounds: Environmental Effects and Screening Values. In: Ware, G.W. (eds) Reviews of Environmental Contamination and Toxicology. Reviews of Environmental Contamination and Toxicology, vol 161. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-6427-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6427-7_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-3152-8

  • Online ISBN: 978-1-4757-6427-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics