Skip to main content

Genetic Approaches to Studying Mouse Models of Human Seizure Disorders

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 548))

Abstract

Epilepsy, characterized by recurrent spontaneous seizures resulting from abnormal, synchronized discharges of neurons in the brain, is one of the most common neurological problems afflicting humans. Although epilepsy clearly has a large environmental component, genetics is thought to be important in the pathogenesis of at least 50% of cases.1 While common epilepsy genes have yet to be identified in humans, several genes have now been identified for rarer, monogenic epilepsies through linkage analysis or association studies followed by positional cloning.2 In parallel, the identification of candidate genes in mouse epilepsy models also facilitates the discovery of human disease genes, as shown for at least one case of idiopathic generalized epilepsy.3,4 Indeed, many features of seizures and the means by which they are induced are conserved in mammals,5 indicating common neural substrates or pathways. Mice already contribute significantly to the discovery of all the currently available antiepileptic drugs and remain a critical part of the comprehensive screening process in the search for new anticonvulsant drugs. In general, mice can provide excellent genetic models for epilepsy by permitting systematic dissection of the molecular and pathophysiologic factors that predispose to seizures in large, genetically homogenous populations.6

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson VE, Hauser WA, Rich SS. Genetic heterogeneity and epidemiology of the epilepsies. In: Delgado-Escueta AV, Wilson WA, Olsen RW, Porter RJ, eds. Jasper’s Basic Mechanisms of the Epilepsies. Philadelphia: Lippincott Williams and Wilkins, 1999.

    Google Scholar 

  2. Meisler MH, Kearney J, Ottman R et al. Identification of epilepsy genes in human and mouse. Annu Rev Genet 2001; 35: 567–88.

    Article  PubMed  CAS  Google Scholar 

  3. Burgess DL, Jones JM, Meisler MH et al. Mutation of the Cat* channel beta subunit gene Cchb4 is associated with ataxia and seizures in the lethargic (lh) mouse. Cell 1997; 88: 385–392.

    Article  PubMed  CAS  Google Scholar 

  4. Escayg A, De Waard M, Lee DD et al. Coding and noncoding variation of the human calcium-channel beta4-subunit gene CACNB4 in patients with idiopathic generalized epilepsy and episodic ataxia. Am J Hum Genet 2000; 66: 1531–1539.

    Article  PubMed  CAS  Google Scholar 

  5. Krall RL, Penry JK, Kupferberg HJ et al. Antiepileptic drug development: I. History and a program for progress. Epilepsia 1978; 4: 393–408.

    Article  Google Scholar 

  6. Frankel WN. Detecting genes in new and old mouse models for epilepsy: A prospectus through the magnifying glass. Epilepsy Res 1999; 36: 97–110.

    Article  Google Scholar 

  7. Gusella JF, MacDonald ME. Molecular genetics: Unmasking polyglutamine triggers in neurodegenerative disease. Nat Rev Neurosci 2000; 2: 109–15.

    Article  Google Scholar 

  8. Bronson SK, Smithies O. Altering mice by homologous recombination using embryonic stem cells. J Biol Chem 1994; 269: 27155–8.

    PubMed  CAS  Google Scholar 

  9. Capecchi MR. The new mouse genetics: Altering the genome by gene targeting. Trends Genet 1989; 5: 70–6.

    Article  PubMed  CAS  Google Scholar 

  10. Lewandoski M. Conditional control of gene expression in the mouse. Nat Rev Genet 2001; 10: 743–55.

    Article  Google Scholar 

  11. Kask K, Zamanillo D, Rozov A et al. The AMPA receptor subunit G1uR-B in its Q/R site-unedited form is not essential for brain development and function. Proc Natl Acad Sci USA 1998; 95: 13777–82.

    Article  PubMed  CAS  Google Scholar 

  12. Cossette P, Liu L, Brisebois K et al. Mutation of GABRA1 in an autosomal dominant form of juvenile myoclonic epilepsy. Nature Genet 2002; 31: 184–189.

    Article  PubMed  CAS  Google Scholar 

  13. Kalachikov S, Evgrafov O, Ross B et al. Mutations in LGI1 cause autosomal-dominant partial epilepsy with auditory features. Nature Genet 2002; 30: 335–341.

    Article  PubMed  Google Scholar 

  14. Morante-Redolat JM, Gorostidi-Pagola A, Piquer-Sirerol A et al. Mutations in the LGI1/Epitempin gene on 10824 cause autosomal dominant lateral temporal epilepsy. Hum Mol Genet 2002; 11: 1119–1128.

    Article  PubMed  CAS  Google Scholar 

  15. Baulac S, Huberfeld G, Gourfinkel-An I et al. First genetic evidence of GABA(A) receptor dysfunction in epilepsy: a mutation in the gamma2-subunit gene. Nat Genet 2001; 28: 46–8.

    PubMed  CAS  Google Scholar 

  16. Wallace RH, Marini C, Petrou S et al. Mutant GABA(A) receptor gamma2-subunit in childhood absence epilepsy and febrile seizures. Nat Genet 2001; 28: 49–52.

    PubMed  CAS  Google Scholar 

  17. Sugawara T, Tsurubuchi Y, Agarwala KL et al. A missense mutation of the Na+ channel alpha II subunit gene Na(v)1.2 in a patient with febrile and afebrile seizures causes channel dysfunction. Proc Natl Acad Sci USA. 2001; 98: 6384–9.

    Article  PubMed  CAS  Google Scholar 

  18. Escayg A, MacDonald BT, Meisler MH et al. Mutations of SCN1A, encoding a neuronal sodium channel, in two families with GEFS+2. Nat Genet 2000; 24: 343–5.

    Article  PubMed  CAS  Google Scholar 

  19. Claes L, Del-Favero J, Ceulemans B et al. De novo mutations in the sodium-channel gene SCN1A cause severe myoclonic epilepsy of infancy. Am J Hum Genet 2001; 68: 1327–32.

    Article  PubMed  CAS  Google Scholar 

  20. Wallace RH, Wang DW, Singh R et al. Febrile seizures and generalized epilepsy associated with a mutation in the Nat-channel beta 1 subunit gene SCN1B. Nat Genet 1998; 19: 366–70.

    Article  PubMed  CAS  Google Scholar 

  21. Singh NA, Charlier C, Stauffer D et al. A novel potassium channel gene, KCNQ2, is mutated in an inherited epilepsy of newborns. Nat Genet 1998; 18: 25–9.

    Article  PubMed  CAS  Google Scholar 

  22. Biervert C, Schroeder BC, Kubisch C et al. A potassium channel mutation in neonatal human epilepsy. Science 1998; 279: 403–6.

    Article  PubMed  CAS  Google Scholar 

  23. Charlier C, Singh NA, Ryan Sg et al. A pore mutation in a novel KQT-like potassium channel gene in an idiopathic epilepsy family. Nat Genet 1998; 18: 53–5.

    Article  PubMed  CAS  Google Scholar 

  24. Steinlein OK, Mulley JC, Propping P et al. A missense mutation in the neuronal nicotinic acetylcholine receptor alpha 4 subunit is associated with autosomal dominant nocturnal frontal lobe epilepsy. Nat Genet 1995; 11: 201–3.

    Article  PubMed  CAS  Google Scholar 

  25. De Fusco M, Becchetti A, Patrignani A et al. The nicotinic receptor beta 2 subunit is mutant in nocturnal frontal lobe epilepsy. Nat Genet 2000; 26: 275–6.

    Article  PubMed  Google Scholar 

  26. Steinlein OK Genes and mutations in idiopathic epilepsy. Am J Med Genet 2001; 106: 139–45.

    Google Scholar 

  27. Jacobs MP, Fischbach GD, Davis MR et al. Future directions for epilepsy research. Neurology 2001; 57: 1536–1542.

    Article  PubMed  CAS  Google Scholar 

  28. Dietschy JM, Turley SD. Control of cholesterol turnover in the mouse. J Biol Chem 2002; 277: 3801–3804.

    Article  PubMed  CAS  Google Scholar 

  29. Watanabe H, Nagata E, Kosakai A et al. Disruption of the epilepsy KCNQ2 gene results in neural hyperexcitability. J Neurochem 2000; 75: 28–33.

    Article  PubMed  CAS  Google Scholar 

  30. Noebels JL. Single locus mutations in mice expressing generalized spike-wave absence epilepsies. Ital J Neurol Sci 1995; 16: 107–11.

    Article  PubMed  CAS  Google Scholar 

  31. Noebels JL, Sidman RL. Inherited epilepsy: spike-wave and focal motor seizures in the mutant mouse tottering. Science 1979; 204: 1334–1336.

    Article  PubMed  CAS  Google Scholar 

  32. Cox GA, Lutz CM, Yang CL et al. Sodium/hydrogen exchanger gene defect in slow-wave epilepsy mutant mice. Cell 1997; 91: 139–48.

    Article  PubMed  CAS  Google Scholar 

  33. Frankel WN, Taylor L, Beyer B et al. Electroconvulsive thresholds of inbred mouse strains. Genomics 2001; 74: 306–12.

    Article  PubMed  CAS  Google Scholar 

  34. Peterson SL, Electroshock. In: Peterson SL, Albertson TE, eds. Neuropharmacology Methods in Epilepsy Research. Boca Raton: CRC Press, 1998: 1–26.

    Google Scholar 

  35. Ferraro TN, Golden GT, Smith GG et al. Mouse strain variation in maximal electroshock seizure threshold Brain Res 2002; 936: 82–86.

    CAS  Google Scholar 

  36. Kitano Y, Usui C, Takasuna K et al. Increasing-current electroshock seizure test: A new method for assessment of anti-and pro-convulsant activities of drugs in mice. J Pharmacol Toxicol Methods 1996; 35: 25–9.

    Article  PubMed  CAS  Google Scholar 

  37. White HS, Wolf HH, Woodhead JH et al. The National Institutes of Health Anticonvulsant Drug Development Program: Screening for efficacy. Adv Neurol 1998; 76: 29–39.

    PubMed  CAS  Google Scholar 

  38. Loscher W. New visions in the pharmacology of anticonvulsion. Eur J Pharmacol 1998; 342: 1–13.

    Article  PubMed  CAS  Google Scholar 

  39. White HS. Chemoconvulsants. In: Peterson SL, Albertson TE, eds. Neuropharmacology Methods in Epilepsy Research. Boca Raton: CRC Press, 1998: 27–40.

    Google Scholar 

  40. Skradski SL, Clark AM, Jiang H et al. A novel gene causing a mendelian audiogenic mouse epilepsy. Neuron 2001; 31: 537–44.

    Article  PubMed  CAS  Google Scholar 

  41. Zheng QY, Johnson KR, Erway LC. Assessment of hearing in 80 inbred strains of mice by ABR threshold analyses. Hear Res 1999; 130: 94–107.

    Article  PubMed  CAS  Google Scholar 

  42. Gerlai R. Gene-targeting studies of mammalian behavior: Is it the mutation or the background genotype? Trends Neurosci 1996; 19: 177–81.

    Article  PubMed  CAS  Google Scholar 

  43. Bucan M, Abel T. The mouse: Genetics meets behavior. Nat Rev Genet 2002; 2: 114–23.

    Article  Google Scholar 

  44. Frankel WN. Mouse strain backgrounds: More than black and white. Neuron 1998; 20:183. 45 Schauwecker PE, Steward O. Genetic determinants of susceptibility to excitotoxic cell death: Implications for gene targeting approaches. Proc Natl Acad Sci USA 1997; 94: 4103–8.

    Google Scholar 

  45. Ben-Ari Y, Cossart R. Kainate, a double agent that generates seizures: Two decades of progress. Trends Neurosci 2000; 23: 580–7.

    Article  PubMed  CAS  Google Scholar 

  46. Goelz MF, Mahler J, Harry J et al. Neuropathologic findings associated with seizures in FVB mice. Lab Anim Sci 1998; 48: 34–37.

    PubMed  CAS  Google Scholar 

  47. Cox GA, Mahaffey CL, Frankel WN. Identification of the mouse neuromuscular degeneration gene and mapping of a second site suppressor allele. Neuron 1998; 1327–37.

    Google Scholar 

  48. Ferraro TN, Golden GT, Smith GG et al. Mapping loci for pentylenetetrazol-induced seizure susceptibility in mice. J Neurosci 1999; 19: 6733–9.

    PubMed  CAS  Google Scholar 

  49. Kosobud AE, Cross SJ, Crabbe JC. Neural sensitivity to pentylenetetrazol convulsions in inbred and selectively bred mice. Brain Res 1992; 592: 122–8.

    Article  PubMed  CAS  Google Scholar 

  50. Ferraro TN, Golden GT, Smith GG et al. Mapping murine loci for seizure response to kainic acid. Mamm Genome 1997; 8: 200–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yang, Y., Frankel, W.N. (2004). Genetic Approaches to Studying Mouse Models of Human Seizure Disorders. In: Binder, D.K., Scharfman, H.E. (eds) Recent Advances in Epilepsy Research. Advances in Experimental Medicine and Biology, vol 548. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6376-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6376-8_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3418-5

  • Online ISBN: 978-1-4757-6376-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics