Skip to main content

Fracture mechanics stress analysis

  • Chapter
Progress in Boundary Element Methods

Abstract

In this chapter the boundary integral equation (BIE) method is discussed with particular reference to its application to fracture mechanics stress analysis. Although the BIE method has been used to treat a variety of boundary value problems, those encountered in fracture mechanics possess certain unique features which require special treatment. There are essentially two distinct difficulties which are encountered when applying standard BIE procedures to fracture models in which a crack is modelled as having a planform of zero thickness (e.g. a line crack in two dimensions). These are:—

  1. (1)

    The indeterminacy encountered when (in plane strain or stress), the direct BIE formulation of a thin ellipse is used to represent a crack when the ellipse degenerates to a line. A similar feature occurs in three-dimensional problems. We describe this degeneracy more fully later in this introduction, attempts to remove this difficulty are described in Section 3.3.

  2. (2)

    The existence of a stress singularity at a sharp crack tip which requires accurate boundary element modelling in order to obtain reliable numerical results. Such modelling is described in detail in Section 3.4. Note however that, although a square root stress singularity occurs in the elastic analysis of a crack in a homogeneous medium, other stress singularities may be encountered (for a review see Atkinson1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atkinson, C., ‘Stress singularities and fracture mechanics’, Appl. Mechs. Reviews, 32, 123–135 (1979)

    Google Scholar 

  2. Rizzo, F. J., ‘An integral equation approach to boundary value problems of classical elastostatics’, Quart. Appl. Math., 25, pp. 83–95 (1967)

    Google Scholar 

  3. Cruse, T. A., ‘Boundary integral equation method for three dimensional elastic fracture mechanics analysis’, Air Force Office of Scientific Research TR-75–0813 (1975)

    Google Scholar 

  4. Cruse, T. A., ‘Elastic singularity analysis’, 1st Int. Symposium Innovative Numerical Analysis in Applied Engineering Science, Versailles (France) (1977)

    Google Scholar 

  5. Cruse, T. A., ‘Two dimensional B.I. E. fracture mechanics analysis’, Appl. Math. Modelling, 2, pp. 287–293 (1978)

    Article  Google Scholar 

  6. Williams, M. L., ‘On the stress distribution at the base of a stationary crack’, J. Appl. Mech., 24, pp. 109–114 (1957)

    Google Scholar 

  7. Rice, J. R. ‘Elastic plastic fracture mechanics), in The Mechanics of Fracture,F. Erdogan (Ed.), AMD 19, pp. 23–53 (1978)

    Google Scholar 

  8. Bilby, B. A. and Swinden, K. H., ‘Plasticity at notches by linear dislocation arrays’, Proc. R. Soc. (London) Ser. A 285, pp. 32–33 (1965)

    Google Scholar 

  9. Atkinson, C. and Kay, T. R., ‘A simple model of relaxation at a crack tip’, Acta Met., pp. 679–685 (1971)

    Google Scholar 

  10. Atkinson, C. and Kanninen, M. F., ‘A simple representation of crack tip plasticity: The inclined strip yield superdislocation model’, Int. J. Fracture, 13, pp. 151–163 (1977)

    Article  Google Scholar 

  11. Rice, J. R., ‘A path independent integral and the approximate analysis of strain concentration by notches and cracks’, J. Appl. Mech., 35, pp. 379–386 (1968)

    Article  Google Scholar 

  12. Eshelby, J. D., ‘The force on an elastic singularity’, Phil. Trans. R. Soc., A 244, pp. 87–112 (1951)

    Google Scholar 

  13. Eshelby, J. D., ‘Energy relations and the energy-momentum tensor in continuum mechanics’, in Inelastic Behavior of Solids, M. F. Kanninen et al. (Eds.), McGraw-Hill, New York (1970)

    Google Scholar 

  14. Knowles, J. K. and Sternberg, E., ‘On a class of conservation laws in linearised and finite elastostatics’, Arch. Rat. Mech. Anal., 44, pp. 187–211 (1972)

    Article  Google Scholar 

  15. Gunther, W., ‘Uber einige Randintegrale der Elastomechanik’, Abh. Braunschw. wiss. Ges., 14, pp. 54–63 (1962)

    Google Scholar 

  16. Atkinson, C., ‘A note on some crack problems in a variable modulus strip’, 27, 639–647 (1975)

    Google Scholar 

  17. Eringen, A. C., ‘Theory of micropolar elasticity’, Fracture, Vol. 2, H. Liebowitz (Ed.) (1968)

    Google Scholar 

  18. Atkinson, C. and Leppington, F. G., ‘The effect of couples stresses on the tip of a crack“, Int. J. Solids Structures, 13, pp. 1103–1122 (1977)

    Article  Google Scholar 

  19. Atkinson, C. and Smelser, R. E., ‘Invariant integrals of thermo viscoelasticity’, Int. J. Solids Structures, 18, 533–549 (1982)

    Google Scholar 

  20. Stern, M., Becher, E. B. and Dunham, R. S., ‘A contour integral computation of mixed-mode stress intensity factors’, Int. J. Fracture, 12, pp. 359–368 (1976)

    Google Scholar 

  21. Soni, M. L. and Stern, M., ‘On the computation of stress intensity factors in fiber composite media using a contour integral method’, Int. J. Fracture, 12, pp. 331–344 (1976)

    Google Scholar 

  22. Hong, C-C. and Stern, M., ‘The computation of stress intensity factors in dissimilar materials’, J. Elasticity, 8, pp. 21–34 (1978)

    Article  Google Scholar 

  23. Stern, M. and Soni, M. L., ‘On the computation of stress intensities at fixed-free corners’, Int. J. Solids Structures, pp. 331–337 (1976)

    Google Scholar 

  24. Stern, M., ‘The numerical calculation of thermally induced stress intensity factors’, J. Elasticity, 9, pp. 91–95 (1979)

    Article  Google Scholar 

  25. Cruse, T. A. and Van Buren, W., ‘Three-dimensiónal elastic stress analysis of a fracture specimen with an edge crack’, Int. J. Fracture Mechs., 7, 1–15 (1971)

    Google Scholar 

  26. Rizzo, F. J. and Shippy, D. J., ‘A formulation and solution procedure for the general non-homogeneous elastic inclusion problem’, Int. J. Solids Structures, 4, pp. 1161–1173 (1968)

    Article  Google Scholar 

  27. Snyder, M. D. and Cruse, T. A., ‘Boundary-integral equation analysis of cracked anisotropic plates’, Int. J. Fracture Mechs., 11, pp. 315–328 (1975)

    Article  Google Scholar 

  28. Stroh, A. N., ‘Dislocations and cracks in anisotropic elasticity’, Phil. Mag., 3, pp. 625–646 (1958)

    Article  Google Scholar 

  29. Atkinson, C., ‘The interaction between a dislocation and a crack’, Int. J. Fracture Mechs., 2, pp. 567–575 (1966)

    Google Scholar 

  30. Sinclair, J. E. and Hirth, J. P., ‘Two-dimensional elastic Green functions for a cracked anisotropic body, J. Physics, F, 5, pp. 236–246 (1975)

    Google Scholar 

  31. Clements, D. L. and King, G. W., ‘A method for the numerical solution of problems governed by elliptic systems in the cut plane’, J. Inst. Maths. Applics., 24, pp. 81–93 (1979)

    Article  Google Scholar 

  32. Bilby, B. A. and Eshelby, J. D., Dislocations and the Theory of Fracture, in Fracture, Vol. 1, pp. 99–181, H. Liebowitz (Ed.), Academic Press, New York (1969)

    Google Scholar 

  33. Atkinson, C., ‘On dislocation pile ups and cracks in inhomogeneous media’, Int. J. Engng Sci., 10, pp. 45–71 (1972)

    Google Scholar 

  34. Cook, T. S. and Erdogan, F., ‘Stresses in bonded materials with a crack perpendicular to the interface’, Int. J. Engng Sci., 11, pp. 745–766 (1972)

    Google Scholar 

  35. Rudolph, T. J. and Ashbaugh, N. E., ‘An integral equation solution for a bounded elastic body containing a crack: Mode I deformation’, Int. J. Fracture, 14, pp. 527–541 (1978)

    Article  Google Scholar 

  36. Chang, S. J. and Morgan, R. B., ‘A boundary integral equation method for fracture problems with mixed mode deformations’, ORNL/CSD-57 (June 1980)

    Google Scholar 

  37. Burgers, J. M., Proc. K. Ned. Akad. Wet., 42, pp. 378–387 (1939)

    Google Scholar 

  38. Nabarro, F. R. N., Theory of Crystal Dislocations, p. 63 (Oxford) (1967)

    Google Scholar 

  39. Weaver, J., ‘Three-dimensional crack analysis’, Int. J. Solids Structures, 13, pp. 321–330 (1977)

    Article  Google Scholar 

  40. Montulli, L. T., ‘The development and solution of boundary integral equations for crack problems in fracture mechanics’, Ph.D. Thesis, U.C.L.A. (1975)

    Google Scholar 

  41. Xanthis, L. S. Private communication

    Google Scholar 

  42. Barone, M. R. and Robinson, A. R., ‘Determination of elastic stresses at notches and corners by integral equations’, Int. J. Solids Structures, 8, pp. 1319–1338 (1972)

    Article  Google Scholar 

  43. Xanthis, L. S., Bernal, M. J. M. and Atkinson, C., ‘The treatment of singularities in the calculation of stress intensity factors using the boundary integral equation method’, Comp. Methods in Appl. Mechs. Engng, 26, pp. 285–304 (1981)

    Article  Google Scholar 

  44. Lachat, J. C., ‘A further development of the boundary integral technique for elastostatics’ (p. 80 ), Ph.D. Thesis, University of Southampton (1975)

    Google Scholar 

  45. Lachat, J. C. and Watson, J. O., ‘A second generation B.I.E. program for 3-dimensional elastic analysis, B.I.E. Method’, Computational Applications in Applied Mechanics, ASME (1975)

    Google Scholar 

  46. Kondrat’ev, V. A., ‘Boundary problems for elliptic equations in domains with conical or angular points’, Trans. Moscow Math. Soc., pp. 227–313 (1967)

    Google Scholar 

  47. Papamichael, N. and Whiteman, J. R., ‘A numerical conformal transformation method for harmonic mixed boundary value problems in polygonal domains’, Z. angew. Math. Phys., 24, pp. 304–316 (1973)

    Article  Google Scholar 

  48. Morley, L. S. D., ‘Finite element solution of boundary-value problems with non-removable singularities’, Phil. Trans. R. Soc., London, A 275, pp. 463–488 (1973)

    Google Scholar 

  49. Barsoum, R. S., ‘On the isoparametric finite elements in linear fracture mechanics’, Int. J. Numer. Meth. Engrg, 10, pp. 25–37 (1976)

    Google Scholar 

  50. Henshell, R. D. and Shaw, K. G., ‘Crack tip finite elements are unnecessary’, Int. J. Numer. Meth. Engrg, 9, pp. 495–507 (1975)

    Article  Google Scholar 

  51. Lynn, P. P. and Ingraffea, A. R., ‘Transition elements to be used with quarter-point cracktip elements’, Int. J. Numer. Meth. Engrg, 6, pp. 1031–1036 (1978)

    Article  Google Scholar 

  52. Pu, S. L., Hussain, M. A. and Lorensen, W. E., ‘The collapsed cubic isoparametric elements as a singular element for crack problems’, Int. J. Numer. Meth. Engrg, 12, pp. 1727–1742 (1978)

    Google Scholar 

  53. Bernal, M. J. M. and Xanthis, L. S., ‘Transition elements to be used with parametric cubic geometry crack tip elements’, to appear

    Google Scholar 

  54. Symm, G. T., ‘Treatment of singularities in the solution of Laplace’s equation by an integral equation method’, NPL Report NAC, 31 January (1973)

    Google Scholar 

  55. Papamichael, N. and Symm, G. T., ‘Numerical techniques for two-dimensional Laplacian problems’, Comput. Meth. Appl. Mech. Engrg, 6, pp. 175–194 (1975)

    Google Scholar 

  56. Schatz, A. H. and Wahlbin, L. B., ‘Maximum norm estimates in the finite element method on plane polygonal domains’, Pt. I, Math. Comput., 32, pp. 73–109 (1978)

    Google Scholar 

  57. Atkinson, C., Xanthis, L. S. and Bernal, M. J. M., ‘Boundary integral equation crack-tip analysis and applications to elastic media with spatially varying elastic properties’, Comp. Meth. Appl. Mechs. Engng (1982) (to appear)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer Science+Business Media New York

About this chapter

Cite this chapter

Atkinson, C. (1983). Fracture mechanics stress analysis. In: Brebbia, C.A. (eds) Progress in Boundary Element Methods. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-6300-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6300-3_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-6302-7

  • Online ISBN: 978-1-4757-6300-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics