Skip to main content

Abstract

Change of mass can be viewed as a general feature of the interaction of the chemical species with the sensor. From the measurement point of view the determination of mass is generally called gravimetry. Although scales and balances are standard equipment in any laboratory, they are not usually regarded as sensors. On the other hand, when we talk about microbalances and microgravimetry(1) we regard them as sensors. Owing to their small size, high sensitivity, and stability, piezoelectric crystals have been used as microbalances, namely, in the determination of thin-layer thickness and in general gas-sorption studies.(2) The incorporation of various chemically sensitive layers has enabled the transition from microbalance to mass sensor and has resulted in the explosive growth of piezoelectric sensors in recent years.(3) The major advantages of mass sensors are their simplicity of construction and operation, their light weight, and the low power required. Measurement of the frequency shift is one of the most accurate types of physical measurement. Compared with electrochemical sensors the measurement is conducted in a monopolar mode, i.e., only a single physical probe is necessary. Mass sensors have high sensitivity and can be used for a very broad range of compounds. However, the corollary is high vulnerability to interferences. Piezoelectric crystals are relatively inexpensive and readily available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References for Chapter 3

  1. A. W. Warner, Microweighing with the quartz crystal oscillator—theory and design, in: Ultra Micro-Weight Determination in Controlled Environments ( S. P. Wolsky and E. J. Zdanuk, eds.), Interscience, New York, 1969.

    Google Scholar 

  2. W. H. King, Jr., Anal. Chem, 36 (1964) 1735.

    Article  CAS  Google Scholar 

  3. G. G. Guilbault, Applications of quartz crystal microbalances in analytical chemistry, in: Methods and Phenomena, Vol. 7 ( C. Lu and A. W. Czaderna, eds.), Elsevier, Amsterdam, 1984.

    Google Scholar 

  4. K. K. Kanazawa and J. G. Gordon, Anal. Chem, 57 (1985) 1770.

    Article  CAS  Google Scholar 

  5. M. Thompson, C. L. Arthur, and G. K. Dhaliwal, Anal. Chem, 58 (1986) 1206.

    Article  CAS  Google Scholar 

  6. A. Kindlund, H. Sundgren, and I. Lundstrom, Sensors and Actuators 6 (1984) 1.

    Article  CAS  Google Scholar 

  7. M. H. Ho, Application of quartz crystal microbalances in aerosol mass measurement, in: Methods and Phenomena, Vol. 7 ( C. Lu and A. W. Czaderna, eds.), Elsevier, Amsterdam, 1984.

    Google Scholar 

  8. V. M. Ristic, Principles of Acoustic Devices, Wiley, New York, 1983.

    Google Scholar 

  9. W. J. Ghijsen and A. Venema, Sensors and Actuators 3 (1982/83) 51.

    Google Scholar 

  10. A. D’Amico, A. Palma, and E. Verona, Sensors and Actuators 3 (1982/83) 31.

    Google Scholar 

  11. A. J. Ricco, S. J. Martin, and T. E. Zipperian, Sensors and Actuators 8 (1985) 319.

    Article  CAS  Google Scholar 

  12. H. Wohltjen and R. Dessy, Anal. Chem, 51 (1979) 1465.

    Article  CAS  Google Scholar 

  13. R. M. White, P. J. Wicher, S. W. Wenzel, and E. T. Zellers, IEEE Trans. Ultrason. Der. Ferroelectr. Freq. Control UFFC-34 (1987) 162.

    Google Scholar 

  14. H. K. Pulker and J. P. Decosterd, Applications of quartz crystal microbalances for thin film deposition process control, in: Methods and Phenomena, Vol. 7 ( C. Lu and A. W. Czaderna, eds.), Elsevier, Amsterdam, 1984.

    Google Scholar 

  15. J. F. Alder and J. McCallum, Analyst 108 (1983) 1169.

    Article  CAS  Google Scholar 

  16. J. W. Grate, A. Snow, D. S. Ballantine, Jr., H. Wohltjen, M. H. Abraham, R. A. McGill, and P. Sasson, Anal. Chem, 60 (1988) 869.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Janata, J. (1989). Mass Sensors. In: Principles of Chemical Sensors. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6257-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6257-0_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-6259-4

  • Online ISBN: 978-1-4757-6257-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics