Skip to main content

The Stress-Strain Behavior of Mechanically Degradable Polymers

  • Chapter
Polymer Networks

Summary

Non-linear constitutive equations are developed for highly filled polymeric materials. These materials typically exhibit an irreversible stress softening called the “Mullins’ Effect.” The development stems from attempting to mathematically model the failing microstructure of these composite materials in terms of a linear cumulative damage model. It is demonstrated that pth order Lebesgue norms of the deformation history can be used to describe the state of damage in these materials and can also be used in the constitutive equations to characterize their time dependent response to strain distrubances. This method of analysis produces time dependent constitutive equations, yet they need not contain any internal viscosity contributions. This theory is applied to experimental data and shown to yield accurate stress predictions for a variety of strain inputs. Included in the development are analysis methods for proportional stress boundary valued problems for special cases of the non-linear constitutive equation.

The research reported herein was supported in part by the Air Force Office of Scientific Research THEMIS Contract F-44620-68-C0022. The work was performed at the University of Utah, Department of Civil Engineering, and is part of the author’s Ph.D. dissertation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Farris, R. J., “Homogeneous Constitutive Equations for Materials with Permanent Memory,” Ph.D Thesis, University of Utah, Department of Civil Engineering (June 1970).

    Google Scholar 

  2. Farris, R. J., “Applications of Viscoelasticity to Filled Materials,” Master’s Thesis, University of Utah, Department of Civil Engineering (June 1969).

    Google Scholar 

  3. Mullins, L. J., “Effect of Stretching on the Properties of Rubber,” J. Rubber Res., 16, 275–289, (1947).

    CAS  Google Scholar 

  4. Mullins, L. J., “Permanent Set in Vulcanized Rubber,” Ind. Rubber World, 63–69 (1949).

    Google Scholar 

  5. Mullins, L. J., “Studies in the Absorption of Energy by Rubber,” J. Rubber Res., 16, 180–185 (1947).

    CAS  Google Scholar 

  6. Oberth, A. E., “Principle of Strength Reinforcement in Filled Polymers,” Rubber Chem. Tech., 40, 1337–1362 (1967).

    Article  CAS  Google Scholar 

  7. Bueche, F., “Molecular Basis for the Mullins Effect,” J. Appl. Polymer Sci., 4, 107–114 (1960).

    Article  CAS  Google Scholar 

  8. Bueche, F., “Mullins Effect and Rubber-Filler Interaction,” J. Appl. Polymer Sci., 5, 271–281 (1961).

    Article  CAS  Google Scholar 

  9. Farris, R. J., “Dilatation of Granular Filled Elastomers Under High Rates of Strain,” J. Appl. Polymer Sci., 8, 25–25 (1964).

    Article  Google Scholar 

  10. Farris, R. J., “The Character of the Stress-Strain Function for Solid Propellants,” Trans. Soc. Rheol., 12, 281–301 (1968).

    Article  Google Scholar 

  11. Farris, R. J., “The Influence of Vacuole Formation on the Response and Failure of Highly Filled Polymers,” Trans. Soc. Rheo., 12, 315–334 (1968).

    Article  CAS  Google Scholar 

  12. Williams, M. L., Blatz, P. J., and Schapery, R. A., “Fundamental Studies Relations to Systems Analysis of Solid Propellants,” GALCIT SM 61-S, California Institute of Technology, Pasadena, California (Feb 1961). A.so published in Interagency Chemical Rocket Propulsion Group, Solid Propellant Mechanical Behavior Manual, Chemical Propulsion Information Agency Pub. No. 21, Section 2. 3 (1963).

    Google Scholar 

  13. Royden, H. L., Real Analysis, III, 2nd Edition, The Macmillan Company, New York (1968).

    Google Scholar 

  14. Coleman, B. D., and Noll, W., “An Approximation Theorem for Functionals with Applications in Continuum Mechanics,” Arch. Rat. Mech. Anal., 6, 355–370 (1960).

    Article  Google Scholar 

  15. Timoshenko, S., and Goodier, J. N., Theory of Elasticity, McGraw-Hill Book Co., New York (1951).

    Google Scholar 

  16. Fung, Y. C., Foundations of Solid Mechanics, Prentice-Hall Inc., Englewood Cliffs, New Jersey (1965).

    Google Scholar 

  17. Sokolnikoff, I. S., Mathematical Theory of Elasticity, McGraw-Hill Book Co., New York (1956).

    Google Scholar 

  18. Eringen, A. C., Mechanics of Continua, John Wiley and Sons, Inc., New York (1967).

    Google Scholar 

  19. Eringen, A. C., Non-Linear Theory of Continuous Media, McGraw-Hill Book Co., New York (1962).

    Google Scholar 

  20. Malvern, L. E., Introduction to the Mechanics of a Continuous Media, Prentice-Hall, Inc., New Jersey (1969).

    Google Scholar 

  21. Volterra, V., Theory of Functionals and of Integral and Integro-Differential Equations, Dover Publications, Inc., New York (1959).

    Google Scholar 

  22. Green, A. E., and Rivlin, R. S., “The Mechanics of Non-Linear Materials with Memory, Part One,” Arch. Rat. Mech. Anal., 1, 1–21 (1959).

    Article  Google Scholar 

  23. Green, A. E., Rivlin, R. S., and Spencer, A. J. M., “The Mechanics of Non-Linear Materials with Memory, Part Two,” Arch. Rat. Mech. Anal., 3, 82–90 (1959).

    Article  Google Scholar 

  24. Green, A. E., and Rivlin, R. S., “The Mechanics of Non-Linear Materials with Memory, Part Three,” Arch. Rat. Mech. Anal., 4, 387–404 (1959).

    Article  Google Scholar 

  25. Rivlin, R. S., “Non-Linear Viscoelastic Solids,” SIAM Review, 7, 323–340 (1965).

    Article  Google Scholar 

  26. Pipkin, A. C., and Rivlin, R. S., “Small Deformations Superposed on Large Deformations in Materials with Fading Memory,” Arch. Rat. Mech. Anal., 8, 297–308 (1961).

    Article  Google Scholar 

  27. Freda, E.,,“Il Teorema di Eulers per le Funzioni di Linea Omogenee,” R. Acc. du LincEi, Rend., XXIV, 5, (1915).

    Google Scholar 

  28. Wylie, C. R., Jr., Advanced Engineering Mathematics, McGraw-Hill Book Co., New York (1960).

    Google Scholar 

  29. Love, A. E. H., The Mathematical Theory of Elasticity, 4th Ed., Dover Publications, Inc., New York (1944).

    Google Scholar 

  30. Swanson, S. R., “Development of Constiutive Equations for Rocks,” Ph.D. Dissertation, Dept. of Mechanical Eng., Univ. of Utah (1969).

    Google Scholar 

  31. Noll, W., “Mathematical Theory of the Mechanical Behavior of Continuous Media,” Arch. Rat. Mech. Anal., 2, 197–226, (1958).

    Article  Google Scholar 

  32. Pipkin, A. C., “Small Finite Deformations of Viscoelastic Solids,” Rev. Mod. Phys., 36, 1034–1041 (1964).

    Article  Google Scholar 

  33. Pipkin, A. C., and Rogers, T. G., “A Non-Linear Integral Representation for Viscoelastic Behavior,” J. Mech. Phys. Solids, 16, 59–72, (1968).

    Article  Google Scholar 

  34. Fréchet, M., “Sur Les Fonctionnelles Continues,” Ann. de L’Ecole Normale Sup., 27, 3rd Series (1910).

    Google Scholar 

  35. Herrmann, L. R., “On a General Theory of Viscoelasticity,” J. Franklin Inst., 280, 244–255 (1965).

    Article  Google Scholar 

  36. Onaran, K., and Findley, W. N., “Combined Stress-Creep Experiments on a Non-Linear Viscoelastic Material to Determine the Kernel Functions for a Multiple Integral Representation of Creep,” Trans. Soc. Rheol. 1, 299–327, (1965).

    Article  Google Scholar 

  37. Williams, M. L., “Structural Analysis of Viscoelastic Materials,” AIAA J., 2, 785–808 (1964).

    Article  Google Scholar 

  38. Tobolsky, A. V., Properties and Structure of Polymers, 160, John Wiley and Sons, Inc., New York (1960).

    Google Scholar 

  39. Schapery, R. A., “A Theory of Non-Linear Thermoviscoelasticity Based on Irreversible Thermodynamics,” Proc. Fifth U.S. Nat. Cong. of Appt. Mech., ASME, 511–530 (1966).

    Google Scholar 

  40. Schapery, R. A., “On the Characterization of Non-Linear Viscoelastic Materials,” Polymer Eng. Sci., 9, 295–310 (1969).

    Article  CAS  Google Scholar 

  41. McGuirt, C. W., and Lianis, G., “Experimental Investigation of Non-Linear Non-Isothermal Viscoelasticity,” Int. J. Eng. Sci., 7, 579–599 (1969).

    Article  CAS  Google Scholar 

  42. Frudenthal, A. M., “Strain Sensitive Response of Filled Elastomers,” Technical Report No. 24, Department of Civil Engineering and Engineering Mechanics, Columbia Univ., etc.

    Google Scholar 

  43. Flory, P. J., Principles of Polymer Chemistry, Cornell University Press, Ithaca, New York (1953).

    Google Scholar 

  44. Treloar, L. R. G., The Physics of Rubber Elasticity, Oxford, Clarendon Press, (1949).

    Google Scholar 

  45. Graham, P. H., and Robinson, C. N., “Analysis of Cumulative Damage in Solid Rocket Propellants by Application of Reaction Rate Methods to the Binder-Filler Separation Process,” Minutes of the Fourth Cumulative Damage Technical Coordination Meeting, North American Rockwell Corporation, McGregor, Texas (May 1968).

    Google Scholar 

  46. Bills, K. W., Jr., Svob, G. J., Planck, R. W., and Erickson, T. L., “A Cumulative-Damage Concept for Propellant-Liner Bonds in Solid Rocket Motors,” J. of Spacecraft, 3, 408–412, (1966).

    Article  CAS  Google Scholar 

  47. Fitzgerald, J. E., “Thermomechanical Coupling in Viscoelastic Materials,” Presentation at the International Conference on Structure, Solid Mechanics and Engineering Design in Civil Engineering Materials, Southampton, England (1969), Discussion to be published by John Wiley and Sons, Inc., New York.

    Google Scholar 

  48. Coleman, B. D., and Mizel, V. J., “Norms and Semi-Groups in the Field of Fading Memory,” Arch. Rat. Mech. Anal., 23, 87–123 (1966).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1971 Springer Science+Business Media New York

About this chapter

Cite this chapter

Farris, R.J. (1971). The Stress-Strain Behavior of Mechanically Degradable Polymers. In: Chompff, A.J., Newman, S. (eds) Polymer Networks. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6210-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6210-5_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-6212-9

  • Online ISBN: 978-1-4757-6210-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics