Skip to main content

Tunable Short-Wavelength Laser Sources

  • Chapter

Part of the book series: NATO ASI Series ((NSSB))

Abstract

The availability of tunable laser radiation in the visible and infrared wavelength regions has made possible many important advances in physics, chemistry, and biology. At the present time, the ultraviolet (UV) region of the spectrum, and in particular the vacuum ultraviolet (VUV, from 200 to 100 nm) and extreme ultraviolet (XUV, from 100 to ~20 nm) regions lack tunable lasers. In fact, only a few lasers have been made to operate at these short wavelengths, in spite of considerable efforts being made in the past decade. The excimer lasers ArF (193 nm), Xe2 (~170 nm), and Ar2 (~120 nm), and the H2 laser (~110 nm) have been available for some time now, but these emit at discrete wavelengths or are tunable only over their relatively narrow bandwidths. More recent efforts have resulted in stimulated VUV emission by the anti-Stokes Raman process in I and Brl and by 2-photon excitation of H 22 , and in the XUV region by 4-photon excitation in Kr (~93 nm)3. Other techniques being explored inclLde recombination processes4 and excitation of ions5 such as Li+; and as we have learned at this school, in principle, the free-electron laser could operate at these short wavelengths.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. C. White and D. Henderson, Tunable 178 nm Iodine anti-Stokes Raman laser, Opt. Lett. 7: 204 (1982)

    Article  Google Scholar 

  2. J. C. White and D. Henderson, Anti-Stokes Raman laser emission at 149 nm in atomic Bromine, Opt. Lett. 8: 520 (1983).

    Article  Google Scholar 

  3. H. Egger, T. S. Luk, H. Pummer, T. Srinivasan, and C. K. Rhodes, Stimulated VUV emission following two-photon excitation of H2, in “Laser Spectroscopy VI”, H. P. Weber and W. Lüthy, eds., Springer-Verlag, Berlin (1983) p. 403.

    Google Scholar 

  4. T. Srinivasan, H. Egger, T. S. Luk, H. Pummer, and C. K. Rhodes, Stimulated extreme-ultraviolet emission at 93 nm in Krypton, in “Laser Spectroscopy VI”, H. P. Weber and W. Lüthy, eds., Springer-Verlag, Berlin (1983) p. 385.

    Chapter  Google Scholar 

  5. W. T. Silfvast and 0. R. Wood II, Recombination lasers in the vacuum ultraviolet, in “Laser Techniques for Extreme Ultraviolet Spectroscopy”, T. J. Mcllrath and R. R. Freeman, eds., American Institute of Physics, New York (1982) p. 128.

    Google Scholar 

  6. H. Mahr and U. Roeder, Use of metastable ions for a soft x-ray laser, Opt. Commun. 10: 227 (1974).

    Article  Google Scholar 

  7. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Interaction between light waves in a nonlinear dielectric, Phys. Rev. 127: 1918 (1962).

    Article  Google Scholar 

  8. G. C. Bjorklund, Effects of focusing on third-order nonlinear processes in isotropic media, IEEE J. Quant. Electr. QE-11: 287 (1975).

    Google Scholar 

  9. R. T. Hodgson, P. P. Sorokin, and J. J. Wynne, Tunable coherent vacuum-ultraviolet generation in atomic vapors, Phys. Rev. Lett. 32: 343 (1974).

    Article  Google Scholar 

  10. C. R. Vidal, Coherent VUV sources for high resolution spectroscopy, Appl. Opt. 19: 3397 (1980).

    Google Scholar 

  11. W. Jamroz and B. P. Stoicheff, Generation of tunable coherent vacuum-ultraviolet radiation, in “Progress in Optics XX”, E. Wolf, ed., North-Holland, Amsterdam (1983) p. 325.

    Chapter  Google Scholar 

  12. G. H. C. New and J. F. Ward, Optical third-harmonic generation in gases, Phys. Rev. Lett. 19: 556 (1967).

    Article  Google Scholar 

  13. R. B. Miles and S. E. Harris, Proposed third-harmonic generation in phase-matched metal vapors, Appl. Phys. Lett. 19: 385 (1971): Optical third-harmonic generation in alkali metal vapors, IEEE J. Quant. Electr. QE-9: 470 (1973).

    Google Scholar 

  14. J. Bokor, P. H. Bucksbaum, and R. R. Freeman, Generation of 35.5 nm coherent radiation, Opt. Lett. 8: 217 (1983).

    Article  Google Scholar 

  15. A. H. Kung, Third-harmonic generation in a pulsed supersonic jet of Xenon, Opt. Lett. 8: 24 (1983).

    Article  Google Scholar 

  16. S. C. Wallace and G. Zdasiuk, High efficiency four-wave sum-mixing in Mg at 140 nm. Appl. Phys. Lett. 28: 449 (1976).

    Article  Google Scholar 

  17. J. R. Banic, R. H. Lipson, T. Efthimiopoulos, and B. P.Stoicheff, Radiative lifetimes of Bt2A state (v’ = 0….8) of NO obtained by VUV laser excitation, Opt. Lett. 6: 461 (1981).

    Article  Google Scholar 

  18. T. J. McKee, B. P. Stoicheff, and S. C. Wallace, Tunable, I) coherent radiation in the Lyman-a region (1210–1290 A) using Mg vapor, Opt. Lett. 3: 207 (1978).

    Article  Google Scholar 

  19. W. Jamroz, P. E. LaRocque, and B. P. Stoicheff, Generation of continuously tunable coherent VUV radiation (140 to 106 nm) in Zn vapor, Opt. Lett. 7: 617 (1982).

    Article  Google Scholar 

  20. R. Mahon and F. S. Tomkins, Frequency up-conversion to the VUV in Hg vapor, IEEE J. Quant. Electr. QE-18: 913 (1982).

    Google Scholar 

  21. R. R. Freeman, R. M. Jopson, and J. Bokor, Generation of coherent and incoherent radiation below 100 nm in Hg, in “Laser Techniques for Extreme Ultraviolet Spectroscopy”, T. J. Mcllrath and R. R. Freeman, eds., American Institute of Physics, New York (1982) p. 422.

    Google Scholar 

  22. R. Hilbig and R. Wallenstein, Resonant sum and difference frequency mixing in Hg, IEEE J. Quant. Electr. QE-19: 1759 (1983).

    Google Scholar 

  23. P. Herman and B. P. Stoicheff, Generation of VUV radiation at 120 to 104 nm by four-wave sum-mixing in Hg vapor, unpublished (1984).

    Google Scholar 

  24. A. H. Kung, J. F. Young, G. C. Bjorklund, and S. E. Harris, Generation of vacuum ultraviolet radiation in phase-matched Cd vapor, Phys. Rev. Lett. 29: 985 (1972).

    Article  Google Scholar 

  25. A. H. Kung, Generation of tunable picosecond VUV radiation, Appl. Phys. Lett. 25: 653 (1974).

    Google Scholar 

  26. R. Hilbig and R. Wallenstein, Narrowband tunable VUV radiation generated by nonresonant sum-and difference-frequency mixing in Xe and Kr, Appl. Opt. 21: 913 (1982); Enhanced production of tunable VUV radiation by phase-matched frequency tripling in Krypton and Xenon, IEEE J. Quant. Electr. QE-17: 1566 (1981).

    Google Scholar 

  27. J. Reintjes, Frequency mixing in the extreme ultraviolet, Appl. Opt. 19: 3889 (1980); J. Reintjes, C. Y. She, and R. C. Eckardt, Generation of coherent radiation in the XUV by fifth-and seventh-order frequency conversion in rare gases, IEEE J. Quant. Electr. QE-14: 581 (1978).

    Google Scholar 

  28. H. Egger, T. Srinivasan, K. Hohla, H. Scheingraber, C. R. Vidal, H. Pummer, and C. K. Rhodes, A tunable, ultrahigh-spectralbrightness ArF* excimer laser source, Appl. Phys. Lett. 39: 37 (1981).

    Google Scholar 

  29. H. Egger, R. T. Hawkins, J. Bokor, H. Pummer, M. Rothschild, and C. K. Rhodes, Generation of high-spectral-brightness tunable XUV radiation at 83 nm, Opt. Lett. 5: 282 (1980).

    Article  Google Scholar 

  30. E. E. Marinero, C. T. Rettner, R. N. Zare, and A. H. Kung, Excitation of H2 using continuously tunable coherent XUV radiation (97.3–102.3 nm), Chem. Phys. Lett. 95: 486 (1983).

    Article  Google Scholar 

  31. D. Cotter, Tunable narrow-band coherent VUV source for the Lyman-alpha region, Opt. Commun. 31: 397 (1979).

    Article  Google Scholar 

  32. R. Hilbig, A. Lago, and R. Wallenstein, Tunable XUV radiation generated by nonresonant frequency tripling in Neon, Opt. Commun. 49: 297 (1984).

    Article  Google Scholar 

  33. R. R. Freeman, G. C. Bjorklund, N. P. Economou, P. F. Liao, and J. E. Bjorkholm, Generation of cw VUV coherent radiation by four-wave sum frequency mixing in Sr vapor, Appl. Phys. Lett. 33: 739 (1978).

    Google Scholar 

  34. A. Timmerman and R. Wallenstein, Generation of tunable single-frequency continuous-wave coherent vacuum-ultravioletradiation, Opt. Lett. 8: 517 (1983).

    Article  Google Scholar 

  35. T. J. McIlrath and R. R. Freeman, “Laser Techniques for Extreme Ultraviolet Spectroscopy”, Am. Inst. Physics, New York (1982).

    Google Scholar 

  36. M. Rothschild, H. Egger, R. T. Hawkins, J. Bokor, H. Pummer, and C. K. Rhodes, High-resolution spectroscopy of molecular Hydrogen in the extreme ultraviolet region, Phys. Rev. A23: 206 (1981).

    Article  Google Scholar 

  37. F. J. Northrup, J. C. Polanyi, S. C. Wallace and J. M. Williamson, VUV laser-induced fluorescence of molecular Hydrogen, Chem. Phys. Lett. 105: 34 (1984).

    Article  Google Scholar 

  38. J. W. Hepburn, D. Klimek, K. Liu, R. G. Macdonald, F. J. Northrup, and J. C. Polanyi, Reactive cross section as a function of reagent energy. II. H(D) + HBr(DBr)-}H2(HD,D2) + Br, J. Chem. Phys. 74: 6226 (1981).

    Article  Google Scholar 

  39. P. Ho and A. V. Smith, Rotationally excited CO from formaldehyde photoionization, Chem. Phys. Lett. 90: 407 (1982).

    Article  Google Scholar 

  40. J. W. Hepburn, F. J. Northrup, G. L. Ogram, J. C. Polanyi, and J. M. Williamson, Rotationally inelastic scattering from surfaces. C0(g) + LiF(001), Chem. Phys. Lett. 90: 407 (1982).

    Article  Google Scholar 

  41. A. C. Provorov, B. P. Stoicheff, and S. C. Wallace, Fluorescence studies in CO with tunable VUV laser radiation, J. Chem. Phys. 67: 5393 (1977).

    Article  Google Scholar 

  42. M. Maeda and B. P. Stoicheff, Measured radiative lifetimes of rovibronic levels in the A’H(v = 0) state of CO and comparison with theory, in “Laser Techniques in the Extreme Ultraviolet”, S. E. Harris and T. B. Lucatorto, eds., Amer. Inst. Physics, New York (1984).

    Google Scholar 

  43. R. H. Lipson, P. E. LaRocque, and B. P. Stoicheff, Vacuum-ultraviolet laser-excited spectra of Xe2, Opt. Lett. 9: 402 (1984).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer Science+Business Media New York

About this chapter

Cite this chapter

Stoicheff, B.P. (1985). Tunable Short-Wavelength Laser Sources. In: Abraham, N.B., Arecchi, F.T., Mooradian, A., Sona, A. (eds) Physics of New Laser Sources. NATO ASI Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6187-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6187-0_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-6189-4

  • Online ISBN: 978-1-4757-6187-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics