Skip to main content

Tissue Optical Properties in Relation to Light Propagation Models and in Vivo Dosimetry

  • Chapter
Photon Migration in Tissues

Abstract

Optical radiation (ultraviolet, visible, infrared) propagates through tissue absorption and scattering processes take place which depend strongly on the wavelength of the radiation and which may vary considerably between tissues. With the widespread and increasingly varied applications of light in medicine and biology, there is a need for accurate but practicalble methods to determine the spatial (and possibly also the temporal) distribution of light in tissue. There are two approaches to the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.R. Doiron, L.O. Svaasand and A.E. Profio, Light dosimetry in tissue: application to photoradiation therapy, jIl: “Porphyrin Photosensitization,” D. Kessel and T.J. Dougherty, eds., Plenum, New York (1983).

    Google Scholar 

  2. J.P.A. Marijnissen and W.M. Star, Phantom measurements for light dosimetry using isotropic and small aperture detectors, in: “Porphyrin Localization and Treatment of Tumors,” D.R. Doiron and C.J. Gomer, eds., Liss, New York (1984).

    Google Scholar 

  3. L.O. Svaasand, Optical dosimetry for direct and intersitial photoradiation therapy of malignant tumors, jn: “Porphyrin Localization and Treatment of Tumors,” D.R. Doiron and C.J. Gomer, eds., Liss, New York (1984).

    Google Scholar 

  4. B.C. Wilson, W.P. Jeeves, and D.M. Lowe, Jn vivo and post-mortem measurements of the attenuation spectra of light in mammalian tissues, Photochem. Photobiol., 42: 153–162 (1985).

    Article  PubMed  CAS  Google Scholar 

  5. J.P.A. Marijnissen, W.M. Star, J.L. van Delft and N.A.P. Franken, Light intensity measurements in optical phantoms and jn vivo during HPD-photoradiation treatment, using a miniature light detector with isotropic response, jam: “Photodynamic Therapy of Tumors and Other Diseases,” G. Jori and C. Perria, eds., Edizioni Libreria, Padova (1985).

    Google Scholar 

  6. W.M. Star, J.P.A. Marijnissen, H. Jansen, and M.J.C. van Gemert, Light dosimetry: status and prospects, J. Photochem. Photobiol ., B1: 149–167 (1987).

    Article  CAS  Google Scholar 

  7. M.S. Patterson, B.C. Wilson and D.R. Wyman, The propagation of optical radiation in tissues, ja: “Advances in Laser Biophysics,” M.J. Colles, ed., JAI Press, England (in press) (1989).

    Google Scholar 

  8. A. Ishimaru, “Wave Propagation and Scattering in Random Media,” Academic, New York (1 978)

    Google Scholar 

  9. S.T. Flock, B.C. Wilson and M.S. Patterson, Total attenuation coefficients and scattering phase functions of tissues and phantom materials at 633 nm, Med. Phys., 14: 835–841 (1987).

    Article  PubMed  CAS  Google Scholar 

  10. J.J. Duderstadt and L.J. Hamilton, “Nuclear Reactor Analysis,” Wiley, New York (1976).

    Google Scholar 

  11. J.L. Boulnois, Photophysical processes in recent medical laser developments: A review, Lasers Med. Sci ., 1: 47–66 (1986).

    Article  Google Scholar 

  12. B.C. Wilson, M.S. Patterson and S.T. Flock, Indirect versus direct techniques for the measurement of the optical properties of tissues, Photochem. Photobiol., 46: 601–608 (1987)

    Article  PubMed  CAS  Google Scholar 

  13. S.L. Jacques, C.A. Alter and S.A. Prahl, Angular dependence of HeNe laser light scattering by human dermis, Lasers Life Sci ., 1: 309–313 (1987).

    Google Scholar 

  14. R.R. Anderson, J. Hu and J.A. Parrish, Optical radiation transfer in the human skin and applications in jn vivo remittance spectroscopy, ja: “Bioengineering and the Skin,” R. Marks and P.A. Payne, eds., MTP Press, Lancaster (1981).

    Google Scholar 

  15. B.C. Wilson, M.S. Patterson and D.M. Burns, Effect of photosensitizer concentration in tissue on the penetration depth of photoactivating light, Lasers Med. Sci ., 1: 235–244 (1986).

    Article  Google Scholar 

  16. J.E. Tyler, Optical properties of water, ja: “Handbook of Optics,” W.G. Driscoll and W. Vaughan, eds., McGraw-Hill, New York (1978).

    Google Scholar 

  17. B.C. Wilson and M.S. Patterson, The physics of photodynamic therapy, Phys. Med. Biol ., 31: 327–360 (1986).

    Article  PubMed  CAS  Google Scholar 

  18. B.C. Wilson, M.S. Patterson, S.T. Flock and J.D. Moulton, The optical absorption and scattering properties of tissues in the visible and near-infrared wavelength range, ja: “Light in Biology and Medicine,” R.H. Douglas, J. Moan and F. dall’Acqua, eds., Plenum Press, New York (1988).

    Google Scholar 

  19. S. Wray, M. Cope, D.T. Delpy, J.S. Wyatt and E.O.R. Reynolds, Characterization of the near infrared absorption spectra of cytochrome aa3 and hemoglobin for the noninvasive moitoring of cerbral oxygenation, Biochm. Biophys. Acta, 933: 184–192 (1988).

    Article  CAS  Google Scholar 

  20. F.P. Bolin, L.E. Preuss and B.W. Cain, A comparison of spectral transmittance for several mammalian tissues: effects at PRT frequencies, ja: “Porphyrin Localization and Treatment of Tumors,” D.R. Doiron and C.J. Gomer, eds., Liss, New York (1984).

    Google Scholar 

  21. W.J.M. van der Putten and M.J.C. van Gernert, A modelling approach to the detection of subcutaneous tumors by hematoporphyrin-derivative fluorescence, Phys. Med. Biol ., 28: 639–645 (1983).

    Article  PubMed  Google Scholar 

  22. W.A.G. Bruts and J.C. van der Leun, Forward scattering properties of human epidermal layers, Photochem. Photobiol ., 40: 231–242 (1984).

    Article  Google Scholar 

  23. M.J.C. van Gemert and W.M. Star, Relations between the Kubelka-Munk and transport equation models for anisotropic scattering, Lasers Life Sci ., 1: 287–298 (1987).

    Google Scholar 

  24. G. Yoon, A.J. Welch, M. Motamed and M.J.C. van Gemert, Development and application of three-dimensional light distribution model for laser irradiated tissue, IEEE J. Quant. Electr ., QE-23: 1721–1733 (1987).

    Google Scholar 

  25. M.J.C. van Gemert, G.A.C.M. Schets, M.S. Bishop, W.F. Cheong and A.J. Welch, Optics of tissue in a multi-layer slab geometry, Lasers Life Sci ., 2: 1–18 (1988).

    Google Scholar 

  26. W.M. Star, J.P.A. Marijnissen and A.J.C. van Gemert, Light dosimetry in optical phantoms and in tissues: I. Multiple flux and transport theory, Phys. Med. Biol ., 3: 437–454 (1988).

    Article  Google Scholar 

  27. A.L. McKenzie, How many external and interstitial illumination be compared in laser photomdynamic theory?, Phys. Med. Biol ., 30: 455–460 (1985).

    Article  PubMed  CAS  Google Scholar 

  28. S.T. Flock, B.C. Wilson and M.S. Patterson, Hybrid Monte Carlo-diffusion theory modelling of light distributions in tissue, SPIE Proc 408 (in press) (1988).

    Google Scholar 

  29. B.C. Wilson and G. Adam, A Monte Carlo model for the absorption and flux distributions of light in tissue, Med. Phys ., 10: 824–830 (1983)

    Article  PubMed  CAS  Google Scholar 

  30. B.F. Bonner, R. Nossal, S. Havlin and G.H. Weiss, Model for photon migration in turbid biological media, J. Opt. Soc. Am ., A4: 423–432 (1987).

    Article  CAS  Google Scholar 

  31. P. van de Zee and D.T. Delpy, Simulation of the point spread function for light in tissue by a Monte Carlo technique, Adv. Exp. Med. Biol ., 215: 179–192 (1987).

    Article  PubMed  Google Scholar 

  32. D.R. Wyman and M.S. Patterson, A discrete method for anisotropic angular sampling in Monte Carlo simulations, J. Comp. Phys (in press) (1988).

    Google Scholar 

  33. D.R. Wyman, M.S. Patterson and B.C. Wilson, Similarity relations for anisotropic scattering in Monte Carlo simulations of deeply penetrating neutral particles, J. Comp. Phys (in press) (1988).

    Google Scholar 

  34. P.A. Wilksch, F. Jacka and A.J. Blake, Studies of light propagation through tissue, ja: “Porphyrin Localization and Treatment of Tumors,” D.R. Doiron and C.J. Gomer, eds., Liss, New York (1984).

    Google Scholar 

  35. D.T. Delpy, M.C. Cope, E.B. Cady, J.S. Wyatt, P.A. Hamilton, S. Hope and E.O.R. Reynolds, Cerebral monitoring in newborn infants by magnetic resonance and near infrared spectroscopy, Scand. J. Clin. Lab. Invest, 47, Suppl. 188: 9–17 (1987).

    CAS  Google Scholar 

  36. 36. M.S. Patterson, B.C. Wilson, J.W. Feather, D.M. Burns and W. Pushka, The measurement of dihematoporphoyrin ether concentration in tissue by reflectance spectrophotometry Photochem. Photobiol 46:337–343 (1987).

    Google Scholar 

  37. B.C. Wilson, G. Firnau, W.P. Jeeves, K.L. Brown and D.M. Burns-McCormick, Chromatographic analysis and tissue distribution of radiocopper-labelled hematoporphyrin derivatives Lasers Med. Sci (in press) (1988)

    Google Scholar 

  38. A.E. Profio and D.R. Doiron, Transport of light in tissues in photodynamic therapy, Photochem. Photobiol, 46: 591–599 (1987).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wilson, B.C., Patterson, M.S., Flock, S.T., Wyman, D.R. (1989). Tissue Optical Properties in Relation to Light Propagation Models and in Vivo Dosimetry. In: Chance, B. (eds) Photon Migration in Tissues. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6178-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6178-8_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3215-0

  • Online ISBN: 978-1-4757-6178-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics