Skip to main content

Photon detectors

  • Chapter
Passive Infrared Detection
  • 387 Accesses

Abstract

As opposed to the thermal detectors studied previously, photon detectors (or quantum detectors) work by direct interaction of photons with electrons. The various photon detection mechanisms are the following.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Blouke, M.M., Burgett, C.B.,Williams R.L. (1973) Sensitivity limits for extrinsic and intrinsic infrared detectors. Infrared Phys., 13(1), pp. 6172.

    Google Scholar 

  • Bode, D. (1966) Lead salt detectors, Academic Press, New York.

    Google Scholar 

  • Bube, R.H. (1978) Photoconductivity of solids, (ed. R.F. Krieger), Huntington, New York.

    Google Scholar 

  • Burstein, E., Pines G., Sclar N. (1956) Optical and photoconductive properties of silicon and germanium. Photoconductive Conference, (eds R.G. Breekenridge et al.), John Wiley and Sons, New York, pp. 353–413.

    Google Scholar 

  • Cabanski, W.A., Schulz, M.J. (1991) Electronic and IR—optical properties of silicide/silicon interfaces. Infrared Phys., 32, pp. 29–44.

    Article  Google Scholar 

  • Capper, P. (1997) Narrow gap II—VI compounds for optoelectronic and electromagnetic applications, Chapman and Hall, London.

    Book  Google Scholar 

  • Capper, P. et al. (1996) Infra-red materials activities at GEG—Marconi Infra-Red Limited: Part 1— Bulk growth techniques. GEC J. Res., 13(3), pp. 164–74.

    Google Scholar 

  • Dennis, P.N.J. (1986) Photodetectors, Plenum Press, New York.

    Book  Google Scholar 

  • Elliott, C.T. (1981) Handbook on semiconductors, Vol. 4, (ed. C. Hilsum), North-Holland Publishing Company, Amsterdam, The Netherlands.

    Google Scholar 

  • Ferry, D.K. (1985) Gallium arsenide technology, Sams of Macmillan, Howard W. Sams and Co., Indianapolis, IN.

    Google Scholar 

  • Hansen, G.L., Schmit, J.L., Casselman, T.N. (1982) Energy gap versus alloy composition and temperature in Hgl,Cd„Te. J. Appl. Phys. 53 (10), p. 7099.

    Article  Google Scholar 

  • Hulme, K.F., Mullin, J.B. (1962) Indium antimonide — A review of its preparation, properties and device applications. Solid-State Electron., 5, 211.

    Article  Google Scholar 

  • Johnson, T.H. (1984) Lead salt detectors and arrays: PbS and PbSe. Proc. SPIE, 443, pp. 60–94.

    Article  Google Scholar 

  • Lawson, W.D. et al. (1959) Preparation and properties of HgTe and mixed crystals of HgTe—CdTe. J. Phys. Chem., 9, 325.

    Google Scholar 

  • Long, D. (1980) Photovoltaic and photoconductive infrared detectors. Optical and infrared detectors (ed. R.J. Keyes ), Springer—Verlag, Berlin.

    Google Scholar 

  • Moss, T.S., Burrell, G.J., Ellis, B. (1973) Semiconductor opto-electronics, John Wiley and Sons, New York.

    Google Scholar 

  • Murray, L.A., Wang, K., Hesse, K. (1980) A review of avalanche photodiodes, trends and markets. Opt. Spectra, 14 (4), p. 54.

    Google Scholar 

  • O’Keefe, E.S. et al. (1997) Infra-red materials activities at GEG—Marconi Infrared Limited: Part 2 — Epitaxial growth technique. GEC J. Res., 14(1), pp. 7–18.

    Google Scholar 

  • Reine, M.B., Broudy, R.M. (1977) A review of HgCdTe infrared detector technology. Proc. SPIE, 124, p. 80.

    Article  Google Scholar 

  • Rogatto, W.D. (ed.) (1993) The infrared and electro-optical systems handbook. Vol. 3: Electro-optical components, Environmental Research Institute of Michigan (ERIM), Ann Arbor, MI. and SPIE Optical Engineering Press, Bellingham, WA.

    Google Scholar 

  • Ross, D.A. (1979) Solid state photodetectors — The photodiode and phototransistor. Optoelectronic devices and optical imaging techniques, Macmillan, New York.

    Google Scholar 

  • Sclar, N., (1984) Properties of doped silicon and germanium infrared detectors. Prog. Quantum Electron., 9(3), pp. 145–257.

    Article  Google Scholar 

  • Smith, R.A., Jones, F.E., Chasmar, R.P. (1958) The detection and measurement of infrared radiation, Clarendon Press, Oxford, UK.

    Google Scholar 

  • Streetman, B.G. (1990) Solid state electronic devices, Prentice—Hall, Englewood Cliffs, NJ.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Caniou, J. (1999). Photon detectors. In: Passive Infrared Detection. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6140-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6140-5_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5090-1

  • Online ISBN: 978-1-4757-6140-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics