Skip to main content

Abstract

The size and morphology of calcium carbonate crystals of the exoskeletons of the Caribbean Scleractinian coral species of the genus Acoropora are described. The fundamental units of the skeleton are the trabeculae, which are linearly aggrading spherulitic fans of polycrystalline aragonite fiber bundles. Each spherulitic fan originates from a center of calcification (Ogilvie, 1896; Wells, 1956) that is composed of packets of submicron calcium carbonate crystals in an amorphous matrix. The nucleating packets appear to have an intracellular origin and their production stimulated by zooxanthellate photosynthesis.

“Although the zooxanthellae seem to play an important role in determining calcification rates in reef-building corals, certain, as yet unknown, physiological factors operate to control the basic mineralization process in a manner which bears no obvious relationship to the number of algae present in a given species. This is illustrated by the fact that large apical polyps of some of the branching acroporid corals contain few zooxanthellae but calcify several times faster per unit of tissue nitrogen than the yellowish brown lateral polyps which are literally stuffed with algae.” —T.F. Goreau (1959:67)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • ADDADI, L. and WEINER, S., 1985. Interactions between acidic proteins and crystals: Steriochemical requirements in biomineralization. Proc. Nat. Acad. Sci., USA, 82: 4110–4114

    Article  CAS  Google Scholar 

  • BARNES, D.J., 1970. Coral skeletons: an explanation of their growth and structure. Science, 170: 1305–1308.

    Article  PubMed  CAS  Google Scholar 

  • BARNES, D.J., 1972. The structure and function of growth ridges in scleractinian corals. Proc. Roy. Soc. London B., 182: 331–350.

    Article  Google Scholar 

  • BARNES, D.J., and CROSSLAND, C.J., 1980. Diurnal and seasonal variations in the growth of a staghorn coral measured by time-lapse photography. Limn. Ocean., 25: 1113–1117.

    Article  Google Scholar 

  • BRYAN, W.H., and HILL, D., 1941. Spherulitic crystallization as a mechanism of skeletal growth in the hexacorals. Proc. Royal Soc., Queensl., 52: 78–91.

    Google Scholar 

  • CHALKER, B.E., 1976. Calcium transport during skeletogenesis in hermatypic corals. Comp. Biochem. and Physiol. A., 54: 455–459.

    Article  CAS  Google Scholar 

  • CRENSHAW, MA., 1984. Mechanisms of normal biological mineralization of calcium carbonates, in Nan-collas, G.H., ed. Biological Mineralization and Demineralization, Dahlem Konferenzen 1982. New York, Springer. 243–257.

    Google Scholar 

  • CONSTANTZ, B.R., 1984. Comparative function of microarchitecture inAcropora cerviornis and Acropora palmata. Palaeontographica Americana, 54: 48–52.

    Google Scholar 

  • CONSTANTZ, B.R., 1986. Coral skeleton construction: a physiochemically dominated process. Paliaos, 1: 152–157.

    Article  Google Scholar 

  • GLADFELTER, E.H., 1982. Skeletal development inAcropora cervicornis: I. Patterns of calcium carbonate accretion in the axial corallite. Coral Reefs, 1: 45–51.

    Article  Google Scholar 

  • GLADFELTER, E.H., 1983. Skeletal development in Acropora cervicornis: II. Diel patterns of calcium carbonate acretion. Coral Reefs, 2: 91–100.

    Article  Google Scholar 

  • GOREAU, T.F., 1959. The physiology of skeletal formation in corals. I. A method for measuring the rate of calcium deposition by corals under different conditions. Biol. Bull., 116: 59–75.

    Article  CAS  Google Scholar 

  • GOREAU, T.F., 1961. Problems of growth and calcium deposition in reef corals. Endeavor, 20: 32–39.

    Article  Google Scholar 

  • GOREAU, T.F., 1963. Calcium carbonate deposition by coralline algae and by corals in relation to their roles as reef builders. Ann. New York Acad. Sci., 190: 127–167.

    Google Scholar 

  • GOREAU, T.F., and BOWEN, B.T., 1955. Calcium uptake by a coral. Science, 122: 1188–1189.

    Article  PubMed  CAS  Google Scholar 

  • HAYASI, K., 1937. On the Detection of calcium in the calicoblasts of some reef corals. Palaos Trop. Biol. Sta. Stud., no. 2 (8): 169–179.

    Google Scholar 

  • ISA, Y., and YAMAZATO, K., 1981. The ultrastructure of the calicoblast and related tissues in Actopora liebes (Dana). Proc. Fourth Inter. Coral Reef Sym., 2: 99–105.

    Google Scholar 

  • JAMES, N.P., 1974. Diagenesis of scleractinial corals in the subaerial vadose environment. J. of Sed. Pet., 48: 785–799.

    Google Scholar 

  • JACKSON, J., and GLADFELTER, E.H., 1985. Ultrastructure of the tissue/skeleton interface of Actopora cervicornis over a diel cycle. Proc. Fifth Inter. Coral Reef Cong., Tahiti, UNESCO, in press.

    Google Scholar 

  • JOHNSTON, I.S., 1980. The ulrastructure of skeletogenesis in hermatypic corals. Inter. Rev. of Cytology, 67: 171–214.

    Article  CAS  Google Scholar 

  • KINCHINGTON, D., 1980. Localisation of intracellular calcium within the epidermis of a cool temperate coral. In Tardent, P. and Tardent, R. (eds.), Developmental and cellular biology of coelenterates. Elsevier., 143–147.

    Google Scholar 

  • LIGHTLY, R.G., 1985. Preservation of internal reef porosity and diagenetic sealing of submerged early Holocene Barrier Reef, Southeast Florida Shelf. In Schneiderman, N. and Harris, P.M. (eds.) SEPM Spec. Pub. 36, Carbonate Cements., 123–151.

    Chapter  Google Scholar 

  • LE TISSIER, M., and BROWN, B.E., 1985. Diurnal patterns of skeletal formation in Pocillopora damicomis (Linnaeus) Proc. Fifth Inter. Coral Reef Cong., Tahiti, UNESCO, in press.

    Google Scholar 

  • MUSCATINE, L., 1967. Gycerol extretion by symbiotic algae from carals and Tridacna and its control by the host. Science, 156: 516–519.

    Article  PubMed  CAS  Google Scholar 

  • PEARSE, V.B., and MUSCATINE, L., 1971. Role of symbiotic algae (zooxanthellae) in coral calcification. Biol. Bull., Woods Hole., 141: 350–363.

    Article  CAS  Google Scholar 

  • OGILVIE, M., 1980. Microscopic and systematic study Madreporarian types of corals. Phil. Trans. Roy. Soc. London B., 187: 83–345.

    Article  Google Scholar 

  • OHLHORST, S.L., 1984. The use of poolyacrylamide gel electrophoresis in coral taxonomua. Paleontographica Americana, 54: 45–48.

    Google Scholar 

  • RICHART Y MENENDEZ, F., and FRIEDMAN, G.M., 1977. Submarine diagenesis of the axial corralite of Actopora cervicornis. Proc. Third Inter. Coral Reef Sym., Miami, 163–166.

    Google Scholar 

  • TOWE, KM., and MALONE, P.G., 1970. Precipitation of metastable carbonate phases from sea water Nature, 226: 348–349.

    CAS  Google Scholar 

  • VANDERMEULEN, H.J., DAVIS, N.D. and MUSCATINE, L., 1972. The effects of inhibitors of photoynthesis on zooxanghellae in corals and other invertebrates. Mar. Biol., 16: 185–191

    Google Scholar 

  • WAINWRIGHT, S.E., 1963. Skeletal organizationin the coral, Pocillopora damicomis. Quar. J. Microsc. Sci., 104: 169–193.

    Google Scholar 

  • Wainwright, SA., 1964. Studies of the mineral phase of coral skeleton. Exp. Cell Res., 32: 213–230.

    Google Scholar 

  • WALLACE, C.C., 1978. The coral genus Actopora (Scleractinia: Astrocoeniina: Acroporidae) in the central and southern Great Barrier Reef Province. Mem. Queens]. Mus., 18: 273–319.

    Google Scholar 

  • WELLS, JA., 1956. Scleratinia. In Moore, R.C., (ed) Treatise on Invertebrate Paleontology: Geol. Soc. Amer. and Univ. Kans., Lawrence. F328444.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Constantz, B.R. (1989). Skeletal Organization in Caribbean Acropora Spp. (Lamarck). In: Crick, R.E. (eds) Origin, Evolution, and Modern Aspects of Biomineralization in Plants and Animals. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6114-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6114-6_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-6116-0

  • Online ISBN: 978-1-4757-6114-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics