Skip to main content

Part of the book series: Modern Inorganic Chemistry ((MICE))

Abstract

The cathode ray tube (CRT) is currently the most widely used electronic display technology. The luminescent images of the CRT are generated by independently exciting the red, green, and blue (RGB) phosphors of each pixel, whose emissions add to give the desired color. While CRTs have excellent picture quality, their size, weight, and low shock resistance prevent them from being used in most mobile applications such as laptop computers and other small consumer electronic devices. The technology that has been applied almost universally in mobile applications involves the use of liquid crystal displays (LCDs). The individual pixels in these displays consist of a liquid crystalline material sandwiched between two electrodes, which in turn is sandwiched between crossed polarizers. The individual pixels of the LCD act as electrically activated light valves, allowing light to be transmitted from a light source behind the LCDpanel. The light source can be a fluorescent back light or a mirror that reflects the incident light. Color images are generated by placing magenta, yellow, and cyan color-pass filters in front of selected pixels, and driving the individual color elements of each pixel to generate the desired spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Dresner, RCA Rev, 30, 322 (1969); W Helfrich and W. G. Schneidere, Phys. Rev. Lett., 14, 229 (1965)

    Article  Google Scholar 

  2. J. Dresner, J Chem Phys., 14, 2902 (1965)

    Google Scholar 

  3. D. F. Williams and M. Schadt, Proc. IEEE, 58, 476 (1970).

    Article  Google Scholar 

  4. C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett., 51, 913 (1987).

    Article  ADS  Google Scholar 

  5. C. W. Tang, S. A. VanSlyke, and C. A. Chen, J Appl. Phys., 65, 3610 (1989).

    Article  ADS  Google Scholar 

  6. C. Hosokawa, H. Higashi, H. Nakamura, and T. Kusumoto, Appl. Phys. Lett., 67, 3853 (1995).

    Article  ADS  Google Scholar 

  7. J. Kido and K. Nagai, JALCOM, 192, 30 (1993)

    Google Scholar 

  8. M. Takeuchi, H. Masui, I. Kikuma, M. Masui, T. Muranoi, and T. Wada, Jpn. J. Appl. Phys., 31, 498 (1992)

    Article  ADS  Google Scholar 

  9. C. Adachi, T. Tsutsui, and S. Saito, Appl. Phys. Lett., 56, 799 (1990)

    Article  ADS  Google Scholar 

  10. C. Hosokawa, H. Higashi, H. Nakamura, and T. Kusumoto, Appl. Phys. Lett., 67, 3853 (1995).

    Article  ADS  Google Scholar 

  11. Y. Hamada, T. Sano, M. Fujita, T. Fujii, Y. Nishio, and K. Shibata, Jpn. J. Appl. Phys., 32, 514 (1993).

    Article  ADS  Google Scholar 

  12. P. E. Burrows, Z. Shen, V. Bulovic, D. M. McCarty, S. R. Forrest, J. A. Cronin, and M. E. Thompson, J. Appl. Phys., 79, 7991 (1996).

    Article  ADS  Google Scholar 

  13. Y. Hamada, T. Sano, M. Fujita, T. Fujii, Y. Nishio, and K. Shibata, Chem. Lett., 905 (1993).

    Google Scholar 

  14. S. A. VanSlyke, C. H. Chen, and C. W. Tang, Appl. Phys. Lett., 69, 2160 (1996).

    Article  ADS  Google Scholar 

  15. G. Gu, P. E. Burrows, S. Venkatesh, S. R. Forrest, and M. E. Thompson, Opt. Lett., 22, 175 (1997).

    Article  ADS  Google Scholar 

  16. G. Gustaffason, G. M. Treacy, Y. Cao, F. Klavertter, N. Colaneri, and A. J. Heeger, Synth. Met., 57, 4123 (1993).

    Article  Google Scholar 

  17. V. Bulovic, G. Gu, P. E. Burrows, S. R. Forrest, and M. E. Thompson, Nature, 380, 29 (1996)

    Article  ADS  Google Scholar 

  18. V. Bulovic, G. Gu, P. E. Burrows, S. R. Forrest, and M. E. Thompson, App. Phys. Lett., 68, 2606 (1996).

    Article  ADS  Google Scholar 

  19. N. J. Turro, Modern Molecular Photochemistry, Benjamin/Cummings Publishing, Menlo Park, Ca. (1978)

    Google Scholar 

  20. J. Guillet, Polymer Photophysics and Photochemistry, Cambridge University Press (1985).

    Google Scholar 

  21. S. Saito, T. Tsutsui, M. Era, N. Takada, C. Adachi, Y. Hamada, and T. Wakimoto Proc. SPIE, 1910, 212 (1993)

    Article  ADS  Google Scholar 

  22. P. E. Burrows and S. R. Forrest, Appl. Phys. Lett., 64, 2285 (1993).

    Article  ADS  Google Scholar 

  23. P. E. Burrows, S. R. Forrest, M. E. Thompson, and S. P. Sibley, Appl. Phys. Lett., 69, 2959 (1996).

    Article  ADS  Google Scholar 

  24. J. Kido, M. Kimura, and K. Kagai, Science, 267, 1332 (1995).

    Article  ADS  Google Scholar 

  25. M. Pope and C. E. Swenberg, Electronic Processes in Organic Crystals, Clarendon Press, Oxford (1982).

    Google Scholar 

  26. C. Wu, J. Sturm, R. A. Register, J. Tian, E. Dana, and M. E. Thompson, IEEE Trans. Electron Devices, 44, 1269 (1997).

    Article  ADS  Google Scholar 

  27. J. Tian, C. C. Wu, M. E. Thompson, J. C. Sturm, R. A. Register, M. J. Marsella, and T. M. Swager, Adv. Mater., 7, 395 (1995)

    Article  Google Scholar 

  28. J. Tian, C. C. Wu, M. E. Thompson, J. C. Sturm, and R. A. Register, Chem. Mater., 7, 2190 (1995).

    Article  Google Scholar 

  29. J. Pommerehne, H. Vestweber, W. Guss, R. E Mahrt, H. Bassler, and M. D. Porsch, Adv. Mater., 7, 551 (1995)

    Article  Google Scholar 

  30. C. Zhang, H. von Seggem, K. Pakbaz, B. Kraabel, H.-W. Schmidt, and A. J. Heeger, Synth. Met., 62, 35 (1994)

    Article  Google Scholar 

  31. C. Zhang, H. von Seggem, B. Kraabel, H.-W. Schmidt, and A. J. Heeger, Synth. Met., 72, 185 (1995)

    Article  Google Scholar 

  32. G. E. Johnson, K. M. McGrane, and M. Stolka, Pure Appl. Chem., 67, 175 (1995)

    Article  Google Scholar 

  33. J. Kido, M. Kohda, K. Okuyama, and K. Nagai, Appl. Phys. Lett., 61, 761 (1992)

    Article  ADS  Google Scholar 

  34. J. Kido, H. Shionoya, and K. Magai, Appl. Phys. Lett., 67, 2281 (1995).

    Article  ADS  Google Scholar 

  35. Z. Shen, V. Burrows, D. Z. Garguzov, M. McCarty, M. E. Thompson, and S. R. Forrest, J. Appl. Phys., 35, L401 (1996).

    ADS  Google Scholar 

  36. W. P. Anderson, W. D. Edwards, and M. C. Zemer, Inorg. Chem., 25, 2728 (1986).

    Article  Google Scholar 

  37. W. P. Anderson, T. R. Cundari, R. S. Drago, and M. C. Zerner, Inorg. Chem., 29, I (1990).

    Google Scholar 

  38. S. A. Van Slyke, P. S. Brynn, and F. V. Levecchio, U.S. Patent No. 5,150, 006 (1992).

    Google Scholar 

  39. T. A. Hopkins, K. Meerholz, S. Shaheen, M. L. Anderson, A. Schmidt, B. Kippelen, A. B. Padias, H. K. Jr., H.ll, N. Peyghambarian, and N. R. Armstrong, Chem. Mater., 8, 344 (1996).

    Google Scholar 

  40. H. Hosokawa, H. Tokailin, H. Higashi, and T. Kusumoto, Appl. Phys. Lett., 60, 1220 (1992).

    Article  ADS  Google Scholar 

  41. M. A. Abkowitz, Phil. Mag. B, 65, 817 (1992).

    Article  Google Scholar 

  42. L. B. Schein, Phil. Mag. B, 65, 795 (1992).

    Article  Google Scholar 

  43. V. M. Kenkre and D. H. Dunlap, Phil. Mag. B, 65, 831 (1992).

    Article  Google Scholar 

  44. E. Aminaka, T. Tsutsui, and S. Saito, Jpn. J. Appl. Phys., 33, 1061 (1994).

    Article  ADS  Google Scholar 

  45. S. Egusa, A. Miura, N. Gemma, and M. Azuma, Jpn. J. Appl. Phys., 33, 2741 (1994).

    Article  ADS  Google Scholar 

  46. A. Rose, Phys. Rev, 97, 1538 (1955).

    Article  ADS  Google Scholar 

  47. M. A. Lampert and P. Mark, Current Injection in Solids, Academic Press, New York (1970).

    Google Scholar 

  48. M. A. Lampert, Phys. Rev, 103, 1648 (1956).

    Article  ADS  Google Scholar 

  49. E Mark and W. J. Helfrich, J. Appl. Phys., 33, 205 (1962).

    Article  ADS  Google Scholar 

  50. R. W. Smith, RCA Rev., 20, 69 (1959).

    Google Scholar 

  51. H. P. D. Lanyon, Phys. Rev., 130, 134 (1963).

    Article  ADS  Google Scholar 

  52. A. Sussman, J. Appl. Phys., 38 2738 (1967).

    Article  ADS  Google Scholar 

  53. A. Sussman, J. Appl. Phys., 38, 2748 (1967).

    Article  ADS  Google Scholar 

  54. B. B. Ismail and R. D. Gould, Phys. Status Solidi A, 115, 237 (1989).

    Article  ADS  Google Scholar 

  55. A. Battacharjee and B. Mallik, Indian J. Phys., 66A, 369 (1992).

    Google Scholar 

  56. P. Canet, C. Laurent, J. Akkinnifesi, and B. Despax, J. Appl. Phys., 72, 2423 (1992).

    Article  Google Scholar 

  57. A. Ahmad and R. A. Collins, Thin Solid Films, 217, 75 (1992).

    Article  ADS  Google Scholar 

  58. A. K. Hassan and R. D. Gould, J. Phys. D: Appl. Phys., 22, 1162 (1989).

    Article  ADS  Google Scholar 

  59. A. K. Hassan and R. D. Gould, Int. J. Electron., 73, 1047 (1992).

    Article  Google Scholar 

  60. S. Gravano, A. K. Hassan, and R. D. Gould, Int. J. Electron., 70, 477 (1991).

    Article  Google Scholar 

  61. H. Antoniadis, M. A. Abkovitz, B. R. Hsieh, S. A. Jenekhe, and M. Stolka, Mat. Res. Soc. Symp. Proc., 328, 377 (1994).

    Article  Google Scholar 

  62. H. Antoniadis, M. A. Abkovitz, and B. R. Hsieh, App. Phys. Lett., 65, 2030 (1994).

    Article  ADS  Google Scholar 

  63. R. N. Marks, D. D. C. Bradley, R. W. Jackson, P. L. Burn, and A. B. Holmes, Synth. Met., 55, 4128 (1993).

    Article  Google Scholar 

  64. C. C. Wu, J. K. M. Chun, P. E. Burrows, J. C. Sturm, M. E. Thompson, S. R. Forrest, and R. A. Register, Appl. Phys. Lett., 66, 653 (1995).

    Article  ADS  Google Scholar 

  65. E E. Burrows, L. S. Sapochak, D. M. McCarty, S. R. Forrest, and M. E. Thompson, Appl. Phys. Lett., 64, 2718 (1994).

    Article  ADS  Google Scholar 

  66. V. Bulovic, G. Gu, P. E. Burrows, S. R. Forrest, and M. E. Thompson, Nature, 380, 29 (1996); V. Bulovic, G. Gu, P. E. Burrows, S. R. Forrest, and M. E. Thompson, Appl. Phys. Lett., 68, 2606 (1996).

    Google Scholar 

  67. E E. Burrows, S. R. Forrest, S. P. S.bley. and M. E. Thompson, Appl. Phys. Lett., 69, 2959 (1996).

    Google Scholar 

  68. C. W. Tang and J. E. Littman, U.S. Patent No. 5,294,869 (1994) H. Nakamura, C. Hosokawa, and T. Kusumoto, in Inorganic and Organic Electroluminescence/EL 96 Berlin, R. H. Mauch and H.-E. Gumlich, eds., pp. 95–100, Wissenschaft und Technik Verlag, Berlin (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sibley, S., Thompson, M.E., Burrows, P.E., Forrest, S.R. (1999). Electroluminescence in Molecular Materials. In: Roundhill, D.M., Fackler, J.P. (eds) Optoelectronic Properties of Inorganic Compounds. Modern Inorganic Chemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6101-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6101-6_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3273-0

  • Online ISBN: 978-1-4757-6101-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics