Skip to main content

Biosynthesis of Glycosaminoglycans and Proteoglycans

  • Chapter
Neurobiology of Glycoconjugates

Abstract

The class of polysaccharides known as glycosaminoglycans consists of repeated disaccharides, usually containing a sulfated hexosamine and uronic acid. As abundant constituents of extracellular matrices, most work on glycosaminoglycans has focused on their roles in cartilage, bone, and synovial fluid, where they are thought to be important for tissue turgor and hydration, ion binding and buffering, and tensile strength and resiliency. Early interest in the biosynthesis of glycosaminoglycans was generated by the discovery of lysosomal storage diseases and disorders of connective tissue metabolism such as arthritis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler, R., Jerdan, J., and Hewitt, A. T., 1985, Responses of cultured neural retinal cells to substratum-bound laminin and other extracellular matrix molecules, Dey. Biol. 112: 110–114.

    Article  Google Scholar 

  • Anderson, M. J., and Swenarchuk, L. E., 1987, Nerve induced remodeling of basal lamina during formation of the neuromuscular junction in cell culture, Prog. Brain Res. 71: 409–421.

    Article  CAS  PubMed  Google Scholar 

  • Appel, A., Horwitz, A. L., and Dorfman, A., 1979, Synthesis of hyaluronic acid in Marfan syndrome, J. Biol. Chem. 254: 12199–12203.

    CAS  PubMed  Google Scholar 

  • Aquino, D., Margolis, R. U., and Margolis, R. K., 1984, Immunocytochemical localization of a chondroitin sulfate proteoglycan in nervous tissue. II. Studies in developing brain, J. Cell Biol. 99: 1130–1139.

    Article  CAS  PubMed  Google Scholar 

  • Balasubramanian, A. S., and Bachhawat, B. K., 1964, Enzyme transfer of sulfate from 3′-phosphoadenosine 5′-phosphosulfate to mucopolysaccharides in rat brain, J. Neurochem. 11: 877–881.

    Article  CAS  PubMed  Google Scholar 

  • Balasubramanian, A. S., and Bacchawat, B. K., 1965, Formation of cerebroside sulfate from 3′ phosphoadenosine 5′-phosphosulfate in sheep brain, Biochim. Biophys. Acta 106: 218–220.

    Article  CAS  PubMed  Google Scholar 

  • Balasubramanian, A. S., and Bacchawat, B. K., 1961, Formation of active sulfate in rat brain, J. Sci. Ind. Res. 20C: 202–204.

    Google Scholar 

  • Balasubramanian, A. S., Joun, N. S., and Marx, W., 1968, Sulfation of N-desulfoheparin and heparin sulfate by a purified enzyme from mastocytoma, Arch. Biochem. Biophys. 128: 623–628.

    Article  CAS  PubMed  Google Scholar 

  • Bargiello, T. A., Saez, L., Baylies, M. K., Gasic, G., Young, M. W., and Spray, D. C., 1987, The Drosophila clock gene per affects intercellular junctional communication, Nature 328: 686–691.

    Article  CAS  PubMed  Google Scholar 

  • Baron-Van Evercooren, A., Kleinman, H., Ohno, S., Marangos, P., Schwartz, J., and Dubois-Dalcq, M., 1982, Nerve growth factor, laminin, and fibronectin promote neurite growth in human fetal sensory ganglia cultures, J. Neurosci. Res. 8: 179–193.

    Article  CAS  PubMed  Google Scholar 

  • Baylies, M., Bargiello, T., Jackson, F., and Young, M., 1987, Changes in abundance or structure of the per gene product can alter periodicity of the Drosophila clock, Nature 326: 390–392.

    Article  CAS  PubMed  Google Scholar 

  • Bird, T. A., Schwartz, N. B., and Peterkovsky, B., 1986, Mechanism for the decreased biosynthesis of cartilage proteoglycans in the scorbutic guinea pig, J. Biol. Chem. 261: 11166–11172.

    CAS  PubMed  Google Scholar 

  • Bourdon, M. A., Oldberg, A., Pierschbacher, M., and Ruoslahti, E., 1985, Molecular cloning and sequence analysis of a chondroitin sulfate proteoglycan cDNA, Proc. Natl. Acad. Sci. USA 82: 1321–1325.

    Article  CAS  PubMed  Google Scholar 

  • Bourdon, M. A., Shiga, M., and Ruoslahti, E., 1986, Identification from cDNA of the precursor form of a chondroitin sulfate proteoglycan core protein, J. Biol. Chem. 261: 12534–12537.

    CAS  PubMed  Google Scholar 

  • Bourdon, M. A., Krusius, T., Campbell, S., Schwartz, N. B., and Ruoslahti, E., 1987, Identification and synthesis of a recognition signal for the attachment of glycosaminoglycans to proteins, Proc. Natl. Acad. Sci. USA 84: 3194–3198.

    Article  CAS  PubMed  Google Scholar 

  • Braell, W. A., and Lodish, H. F., 1981, Biosynthesis of the erythrocyte anion transport protein, J. Biol. Chem. 256: 11337–11344.

    CAS  PubMed  Google Scholar 

  • Brandt, A. E., Distler, J., and Jourdian, G. W., 1969, Biosynthesis of the chondroitin sulfate protein linkage region: Purification and properties of a glucuronosyltransferase from embryonic chick brain, Proc. Natl. Acad. Sci. USA 64: 374–378.

    Article  CAS  PubMed  Google Scholar 

  • Brandt, A. E., Distler, J. J ., and Jourdian, G. W., 1975, Biosynthesis of chondroitin sulfate proteoglycan, J. Biol. Chem. 250: 3996–4006.

    Google Scholar 

  • Brennan, M. J., Oldberg, A., Ruoslahti, E., Brown, K., and Schwartz, N. B., 1983, Immunologic evidence for two distinct chondroitin sulfate proteoglycan core proteins: Differential expression in cmd mice, Dey. Biol. 98: 139–147.

    Article  CAS  Google Scholar 

  • Brennan, M. J., Oldberg, A., Pierschbacher, M. D., and Ruoslahti, E., 1984, Chondroitin/dermatan sulfate proteoglycan in human fetal membranes, J. Biol. Chem. 259: 13742–13750.

    CAS  PubMed  Google Scholar 

  • Bunge, R. P., and Bunge, M. B., 1983, Interrelationship between Schwann cell function and extracellular matrix production, Trends Neurosci. 6: 499–503.

    Article  Google Scholar 

  • Burkart, T., and Weismann, U. N., 1987, Sulfated glycosaminoglycans (GAG) in the developing mouse brain, Dey. Biol. 120: 447–456.

    Article  CAS  Google Scholar 

  • Burkart, T., Hofmann, K., Siegrist, H. P., and Herschkowitz, N. N., 1981, Quantitative measurement of in vivo sulfatide metabolism during development of the mouse brain: Evidence for a large rapid degradatable sulfatide pool, Dey. Biol. 83: 42–48.

    Article  CAS  Google Scholar 

  • Burkart, T., Caimi, L., Herschkowitz, N. N., and Weismann, U. N., 1983, Metabolism of sulfogalactosyl glycerolipids in the myelinating mouse brain, Dey. Biol. 98: 182–186.

    Article  CAS  Google Scholar 

  • Burnell, J. N., and Roy, A. B., 1978, Purification and properties of the ATP sulfurylase of rat liver, Biochim. Biophys. Acta 527: 239–248.

    Article  CAS  PubMed  Google Scholar 

  • Campbell, S. C., and Schwartz, N. B., 1988, Kinetics of intracellular processing of chondroitin sulfate proteoglycan core protein and other matrix components, J. Cell Biol. 106: 2191–2202.

    Article  CAS  PubMed  Google Scholar 

  • Carey, D. J., Rafferty, C., and Todd, M., 1987, Effects of inhibition of proteoglycan synthesis on the differentiation of cultured rat Schwann cells, J. Cell Biol. 105: 1013–1021.

    Article  CAS  PubMed  Google Scholar 

  • Castejón, H. V., 1970, Histochemical demonstration of acid glycosaminoglycans in the nerve cell cytoplasm of mouse central nervous system, Acta Histochem. 35: 161–172.

    PubMed  Google Scholar 

  • Castellot, J. J., Jr., Choay, J., Lormeau, J.-C., Petitou, M., Sache, E., and Kamovsky, M., 1986, Structural determinants of the capacity of heparin to inhibit the proliferation of vascular smooth muscle cells. II. Evidence for a pentasaccharide sequence that contains a 3-O-sulfate group, J. Cell Biol. 102: 1979–1984.

    Article  CAS  PubMed  Google Scholar 

  • Chiquet, M., and Fambrough, D., 1984, Chick myotendinous antigen. II. A novel extracellular glycoprotein complex consisting of large disulfide-linked subunits, J. Cell Biol. 98: 1937–1946.

    Article  CAS  PubMed  Google Scholar 

  • Choay, J., Petitou, M., Lormeau, J., Sinay, P., Casu, B., and Gatti, G., 1983, Structure—activity relationship in heparin: A synthetic pentasaccharide with high affinity for antithrombin III and eliciting high anti-factor Xa activity, Biochem. Biophys. Res. Commun. 116: 492–499.

    Article  CAS  PubMed  Google Scholar 

  • Chopra, R. K., Pearson, C. H., Pringle, G. A., Fackre, D. S., and Scott, P. G., 1985, Dermatan sulfate is located on serine-4 of bovine proteodermatan sulfate, Biochem. J. 232: 277–279.

    CAS  PubMed  Google Scholar 

  • Chun, J. J. M., and Shatz, C. J., 1988, A fibronectin-like molecule is present in the developing cat cerebral cortex and is correlated with subplate neurons, J. Cell Biol. 106: 857–872.

    Article  CAS  PubMed  Google Scholar 

  • Cole, G., and Glaser, L., 1986, A heparin-binding domain from N-CAM is involved in neural cell—substratum adhesion, J. Cell Biol. 102: 403–412.

    Article  CAS  PubMed  Google Scholar 

  • Cooper, A. R., and MacQueen, H. A., 1983, Subunits of laminin are differentially synthesized in mouse eggs and early embryos, Dey. Biol. 96: 467–471.

    Article  CAS  Google Scholar 

  • Crossin, K., Hoffmann, B., Grumet, S., Thiery, J.-P., and Edelman, G., 1986, Site-restricted expression of cytotactin during development of the chicken embryo, J. Cell Biol. 102: 1917–1930.

    Article  CAS  PubMed  Google Scholar 

  • Davis, G., Varon, S., Engvall, E., and Manthorpe, M., 1985, Substratum-binding neurite-promoting factors: Relationships to laminin, Trends Neurosci. 8: 528–532.

    Article  CAS  Google Scholar 

  • Day, A., Ramis, C., Fisher, I., Gehron-Robey, P., Termine, J., and Young, M., 1986, Characterization of bone PGII cDNA and its relationship to PGII mRNA from other connective tissues, Nucleic Acids Res. 14: 9861–9876.

    Article  CAS  PubMed  Google Scholar 

  • Day, A. A., McQuillan, C. I., Termine, J. O., and Young, M. R., 1987, Molecular cloning and sequence analysis of the cDNA for small proteoglycan II of bovine bone, Biochem. J. 248: 801–805.

    CAS  PubMed  Google Scholar 

  • De, K. K., Yamamoto, K., and Whistler, R. L., 1978, Enzymatic formation and hydrolysis of polysaccharide sulfates, ACS Symp. Ser. 77: 121–147.

    Article  CAS  Google Scholar 

  • Delpech, A., Girard, N., and Delpech, B., 1982, Location of hyaluronectin in the nervous system, Brain Res. 245: 251–257.

    Article  CAS  PubMed  Google Scholar 

  • Doege, K., Fernandez, P., Hassell, J., Sasaki, M., and Yamada, Y., 1986, Partial cDNA sequence encoding a globular domain at the C terminus of the rat cartilage proteoglycan, J. Biol. Chem. 261: 8108–8111.

    CAS  PubMed  Google Scholar 

  • Doege, K., Sasaki, M., Horigan, E., Hassell, J., and Yamada, Y., 1987, Complete primary structure of the rat cartilage proteoglycan core protein deduced from cDNA clones, J. Biol. Chem. 262: 1775717767.

    Google Scholar 

  • Dorfman, A., and Ho, P.-L., 1970, Synthesis of acid mucopolysaccharides by glial tumor cells in tissue culture, Proc. Natl. Acad. Sci. USA 66: 495–499.

    Article  CAS  PubMed  Google Scholar 

  • Dziadek, M., and Timpl, R., 1985, Expression of nidogen and laminin in basement membranes during mouse embryogenesis and in teratocarcinoma cells, Dey. Biol. 111: 372–382.

    Article  CAS  Google Scholar 

  • Dziadek, M., Fujiwara, S., Paulsson, M., and Timpl, R., 1985, Immunological characterization of basement membrane types of heparan sulfate proteoglycan, EMBO J. 4: 905–912.

    CAS  PubMed  Google Scholar 

  • Easter, S., Bratton, B., and Scherer, S., 1984, Growth related order of the retinal fiber layer in goldfish, J. Neurosci. 4: 2173–2190.

    PubMed  Google Scholar 

  • Edgar, D., Timpl, R., and Thoenen, H., 1983, The heparin-binding domain of laminin is responsible for its effects on neurite outgrowth and neuronal survival, EMBO J. 3: 1463–1468.

    Google Scholar 

  • Ekblom, P., Alitalo, K., Vaheri, A., Timpl, R., and Saxen, L., 1980, Induction of a basement membrane glycoprotein in embryonic kidney: Possible role of laminin in morphogenesis, Proc. Natl. Acad. Sci. USA 77: 485–489.

    Article  CAS  PubMed  Google Scholar 

  • Esko, J. D., Stewart, T., and Taylor, W., 1985, Animal cell mutants defective in glycosaminoglycan biosynthesis, Proc. Natl. Acad. Sci. USA 82: 3197–3201.

    Article  CAS  PubMed  Google Scholar 

  • Esko, J., Elgavish, A., Prasthofer, T., Taylor, W., and Weinke, J., 1986, Sulfate transport-deficient mutants of CHO cells, J. Biol. Chem. 261: 15725–15733.

    CAS  PubMed  Google Scholar 

  • Esko, J. D., Weinke, J., Taylor, W., Ekborg, G., Roden, L., Anantharamaiah, G., and Gawish, A., 1987, Inhibition of chondroitin and heparan sulfate biosynthesis in Chinese hamster ovary cell mutants defective in galactosyltransferase I, J. Biol. Chem. 262: 12189–12195.

    CAS  PubMed  Google Scholar 

  • Fahrig, T., Landa, C., Pesheva, P., Kuhn, K., and Schachner, M., 1987, Characterization of binding properties of the myelin-associated glycoprotein to extracellular matrix constituents, EMBO J. 6: 2875–2883.

    Google Scholar 

  • Fedarko, N., and Conrad, H., 1986, A unique heparan sulfate in the nuclei of hepatocytes: Structural changes with the growth state of the cells, J. Cell Biol. 102: 587–599.

    Article  CAS  PubMed  Google Scholar 

  • Fellini, S. A., Kimura, J. H., and Hascall, V. C., 1984, Localization of proteoglycan core protein in subcellular fractions isolated from rat chondrosarcoma chondrocytes, J. Biol. Chem. 259:4634–4641. Fransson, L.-A., Haysmark, B., and Sheehan, J., 1981, Self-association of heparan sulfate, J. Biol. Chem. 256: 13039–13043.

    Google Scholar 

  • Galligani, L., Hopwood, J., Schwartz, N. B., and Dorfman, A., 1975, Stimulation of synthesis of free

    Google Scholar 

  • chondroitin sulfate chains by 3-D-xylosides in cultured cells, J. Biol. Chem. 250:5400–5406.

    Google Scholar 

  • Gallo, V., Bertolotto, A., and Levi, G., 1987, The proteoglycan chondroitin sulfate is present in a subpopulation of cultured astrocytes and in their precursors, Dev. Biol. 123: 282–285.

    Article  CAS  PubMed  Google Scholar 

  • Geetha-Habib, M., Campbell, S., and Schwartz, N. B., 1984, Subcellular localization of the synthesis and glycosylation of chondroitin sulfate proteoglycan core protein, J. Biol. Chem. 259: 7300–7310.

    CAS  PubMed  Google Scholar 

  • Geller, D., Henry, J., Belch, J., and Schwartz, N. B., 1987, Co-purification and characterization of ATPsulfurylase and adenosine-5′-phosphosulfate kinase from rat chondrosarcoma, J. Biol. Chem. 262: 7374–7382.

    CAS  PubMed  Google Scholar 

  • Glaser, L., and Brown, D. H., 1955, The enzymatic synthesis in vitro of hyaluronic acid chains, Proc. Natl. Acad. Sci. USA 41: 253–260.

    Article  CAS  PubMed  Google Scholar 

  • Gloor, S., Odink, K., Guenther, J., Nick, H., and Monard, D., 1986, A glia-derived neurite promoting factor with protease inhibitory activity belongs to the protease nexins, Cell 47: 687–693.

    Article  CAS  PubMed  Google Scholar 

  • Glössl, J., Beck, M., and Kresse, H., 1984, Biosynthesis of proteodermatan sulfate in cultured human fibroblasts, J. Biol. Chem. 259: 14144–14150.

    PubMed  Google Scholar 

  • Gordon, H., Sample, S., and Hall, Z., 1987, Genetic variants of the C2 muscle cell line defective in glycosaminoglycan biosynthesis, J. Cell Biol. 105: 199a.

    Article  Google Scholar 

  • Gospodarowicz, D., and Neufeld, G., 1987, Fibroblast growth factor: Molecular and biological properties, in: Mesenchymal—Epithelial Interactions in Neural Development ( J. K. Wolff, J. Sievers, and M. Berry, eds.), pp. 191–222, Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Gregory, J. D., and Lipmann, F., 1957, The transfer of sulfate among phenolic compounds with 3’,5’- diphosphoadenosine as coenzyme, J. Biol. Chem. 229: 1081–1089.

    CAS  PubMed  Google Scholar 

  • Grey, H. M., and Chesnut, R., 1985, Antigen processing and presentation to T cells, Immunol. Today 6: 101–106.

    Article  CAS  Google Scholar 

  • Guenther, J., Nick, H., and Monard, D., 1985, A glia-derived neurite promoting factor with protease inhibitory activity, EMBO J. 4: 1963–1966.

    CAS  PubMed  Google Scholar 

  • Guha, A., Northover, B. J., and Bachhawat, B. K., 1960, Incorporation of radioactive sulfate into chondroitin sulfate in the developing brain of rats, J. Sci. Ind. Res. C19: 287–289.

    Google Scholar 

  • Gundersen, R., 1987, Response of sensory neuntes and growth cones to patterned substrata of laminin and fibronectin in vitro, Dev. Biol. 121: 423–431.

    Article  CAS  PubMed  Google Scholar 

  • Halfter, W., Reckhaus, W., and Kroger, S., 1987, Nondirected axonal growth on basal lamina from avian embryonic neural retina, J. Neurosci. 7: 3712–3722.

    CAS  PubMed  Google Scholar 

  • Hall, J., and Rosbash, M., 1988, Mutations and molecules influencing biological rhythms, Annu. Rev. Neurosci. 11: 373–393.

    Article  CAS  PubMed  Google Scholar 

  • Hampson, I. N., Kumar, S., and Gallagher, J., 1983, Differences in the distribution of 0-sulphate groups of cell-surface and secreted heparan sulphate produced by human neuroblastoma cells in culture, Biochim. Biophys. Acta 763: 183–190.

    Article  CAS  PubMed  Google Scholar 

  • Hantaz-Ambroise, D., Vigny, M., and Koenig, J., 1987, Heparan sulfate proteoglycan and laminin mediate two different types of neurite outgrowth, J. Neurosci. 7: 2293–2304.

    CAS  PubMed  Google Scholar 

  • Hart, C. W., 1978, Sulfotransferase levels in developing cornea, J. Biol. Chem. 253: 347–353.

    CAS  PubMed  Google Scholar 

  • Hascall, V. C., and Riolo, R. L., 1972, Characteristics of the protein—keratan sulfate core and of keratin sulfate prepared from bovine nasal cartilage proteoglycan, J. Biol. Chem. 247: 4529–4538.

    CAS  PubMed  Google Scholar 

  • Hassell, J. R., Kimura, J. H., and Hascall, V. C., 1986, Proteoglycan core families, Annu. Rev. Biochem. 55: 539–568.

    Article  CAS  PubMed  Google Scholar 

  • Hedgecock, E., Culotti, J., Hall, D., and Stern, B., 1987, Genetics of cell and axon migrations in C. elegans, Development 100: 365–382.

    CAS  PubMed  Google Scholar 

  • Henkart, P., Humphreys, S., and Humphreys, T., 1973, Characterization of sponge aggregation factor; a unique proteoglycan complex, Biochemistry 12: 3045–3052.

    Article  CAS  PubMed  Google Scholar 

  • Hirsch, M. R., Wietzerbin, J., Pierres, M., and Goridis, C., 1983, Expression of Ia antigens by cultured astrocytes treated with gamma-interferon, Neurosci. Lett. 41: 199–204.

    Article  CAS  PubMed  Google Scholar 

  • Ho, K.-L., Chang, C.-H., Yang, S., and Chason, J., 1984, Neuropathologic findings in thanatophoric dysplasia, Acta Neuropathol. 63: 218–228.

    Article  CAS  PubMed  Google Scholar 

  • Hoffman, H-P., Schwartz, N. B., Rodén, L., Prockop, D., 1984, Localization of xylosyltransferase in the cisterna of the rough endoplasmic reticulum, Connect. Tissue Res. 12: 151–163.

    Article  Google Scholar 

  • Hoffman, S., and Edelman, G., 1987, A proteoglycan with HNK-1 antigenic determinants is a neuron-associated ligand for cytotactin, Proc. Natl. Acad. Sci. USA 84: 2523–2527.

    Article  CAS  PubMed  Google Scholar 

  • Inestrosa, N. C., Matthew, W., Reiness, C., Hall, Z., and Reichardt, L., 1985, Atypical distribution of asymmetric acetylcholinesterase in mutant PC12 pheochromocytoma cells lacking a cell surface heparan sulfate proteoglycan, J. Neurochem. 45: 86–94.

    Article  CAS  PubMed  Google Scholar 

  • Ishihara, M., Fedarko, N., and Conrad, H., 1986, Transport of heparan sulfate into the nuclei of hepatocytes, J. Biol. Chem. 261: 13575–13580.

    CAS  PubMed  Google Scholar 

  • Ishihara, M., Fedarko, N., and Conrad, H., 1987, Involvement of phosphatidylinositol and insulin in the coordinate regulation of proteoheparan sulfate metabolism and hepatocyte growth, J. Biol. Chem. 262: 4708–4716.

    CAS  PubMed  Google Scholar 

  • Jackson, F. R., Bargiello, T. A., Yun, S., and Young, M. W., 1986, Product of per locus of Drosophila shares homology with proteoglycans, Nature 320: 185–188.

    Article  CAS  PubMed  Google Scholar 

  • Jacobsson, I., Backstrom, G., Höök, M., Lindahl, U., Feingold, D. S., Malmström, A., and Rodén, L., 1979, Biosynthesis of heparin: Assay and properties of the microsomal uronosyl C-5 epimerase, J. Biol. Chem. 254: 2975–2979.

    CAS  PubMed  Google Scholar 

  • Jalkanen, M., Rapraeger, A., and Bernfield, M., 1988, Mouse mammary epithelial cells produced basement membrane and cell surface proteoglycans containing distinct core proteins, J. Cell Biol. 106: 953–962.

    Article  CAS  PubMed  Google Scholar 

  • Jansson, L., Höök, M., Wasteson, A., and Lindahl, U., 1975, Biosynthesis of heparin. V. Solubilization and partial characterization of N- and O-sulphotransferases, Biochem. J. 149: 49–55.

    CAS  PubMed  Google Scholar 

  • Jourdian, G. W., 1979, Biosynthesis of glycosaminoglycans, in: Complex Carbohydrates of Nervous Tissue ( R. U. Margolis and R. K. Margolis, eds.), pp. 103–126, Plenum Press, New York.

    Chapter  Google Scholar 

  • Kanwar, Y. S., Rosenzweig, L., and Jakubowski, M., 1986, Xylosylated-proteoglycan-induced Golgialterations, Proc. Natl. Acad. Sci. USA 83: 6499–6503.

    Article  CAS  PubMed  Google Scholar 

  • Keller, K. L., Keller, J., and Moy, J., 1980, Heparan sulfates from Swiss mouse 3T3 and SV3T3 cells: O-Sulfate difference, Biochemistry 19: 2529–2536.

    Article  CAS  PubMed  Google Scholar 

  • Keller, R., and Furthmayr, H., 1986, Isolation and characterization of basement membrane and cell proteoheparan sulphates from HR9 cells, Eur. J. Biochem. 161: 707–714.

    Article  CAS  PubMed  Google Scholar 

  • Kimata, K., Okayama, M., Oohira, A., and Suzuki, S., 1973, Cytodifferentiation and proteoglycan biosynthesis, Mol. Cell. Biochem. 1: 211–228.

    Article  CAS  PubMed  Google Scholar 

  • Kimata, K., Barrach, H., Brown, K. S., and Pennypacker, J. P., 1981, Absence of proteoglycan core protein in cartilage from the cmd/cmd (cartilage matrix deficiency) mouse, J. Biol. Chem. 256: 6961–6968.

    CAS  PubMed  Google Scholar 

  • Kimura, J. H., Thomas, E. J., Hascall, V. C., Reiner, H., and Poole, A. R., 1981, Identification of core protein; an intermediate in proteoglycan biosynthesis in culture chondrocytes from the Swarm rat chondrosarcoma, J. Biol. Chem. 250: 7890–7897.

    Google Scholar 

  • Kimura, J. H., Lolunander, L. S., and Hascall, V. C., 1984, Studies on the biosynthesis of cartilage proteoglycan in a model system of cultured chondrocytes from the Swarm rat chondrosarcoma, J. Cell Biochem. 26: 261–278.

    Article  CAS  PubMed  Google Scholar 

  • Kleinman, H., McGarvey, M., Hassell, J., Star, V., Cannon, F., Laurie, G., and Martin, G., 1986, Basement membrane complexes with biological activity, Biochemistry 25: 312–318.

    Article  CAS  PubMed  Google Scholar 

  • Krayanek, S., 1980, Structure and orientation of extracellular matrix in developing chick optic tectum, Anat. Rec. 197: 95–109.

    Article  CAS  PubMed  Google Scholar 

  • Krayanek, S., and Goldberg, S., 1981, Oriented extracellular channels and axonal guidance in the embryonic chick retina, Dev. Biol. 84: 41–50.

    Article  CAS  PubMed  Google Scholar 

  • Krueger, R. C., and Schwartz, N. B., 1988, Investigation of a large chondroitin sulfate proteoglycan from embryonic chick brain, 4th Int. Congr. Cell Biol., accepted.

    Google Scholar 

  • Krueger, R., Olson, C. A., and Schwartz, N. B., 1985, Deglycosylation of proteoglycan by hydrogen fluoride in pyridine, Anal. Biochem. 146: 232–237.

    Article  PubMed  Google Scholar 

  • Krusius, T., and Ruoslahti, E., 1986, Primary structure for extracellular matrix proteoglycan core protein deduced from cloned cDNA, Proc. Natl. Acad. Sci. USA 83: 7683–7687.

    Article  CAS  PubMed  Google Scholar 

  • Kunemund, V., Jungalwala, F. B., Fischer, G., Chou, D. K. H., Keilhauer, G., and Schachner, M., 1988, The L2/HNK-1 carbohydrate of neural cell adhesion molecules is involved in cell interactions, J. Cell Biol. 106: 213–223.

    Article  CAS  PubMed  Google Scholar 

  • Lark, M., Laterra, J., and Culp, L., 1985, Close and focal contact adhesions of fibroblasts to a fibronectincontaining matrix, Fed. Proc. 44: 394–403.

    CAS  PubMed  Google Scholar 

  • Leivo, I., Vaheri, A., Timpl, R., and Wartiovaara, J., 1980, Appearance and distribution of collagens and laminin in the early mouse embryo, Dev. Biol. 76: 100–114.

    Article  CAS  PubMed  Google Scholar 

  • Lindahl, U., Feingold, D., and Rodén, L., 1986, Biosynthesis of heparin, Trends Biochem. Sci. 11: 221–225.

    Article  CAS  Google Scholar 

  • Liu, X., Lorenz, L., Yu, Q., Hall, J. C., and Rosbash, M., 1988, Spatial and temporal expression of the period gene in Drosophila melanogaster, Genes Dev. 2: 228–238.

    Article  CAS  PubMed  Google Scholar 

  • Majack, R. A., Cook, S., and Bornstein, P., 1986, Control of smooth muscle cell growth by components of the extracellular matrix: Autocrine role for thrombospondin, Proc. Natl. Acad. Sci. USA 83: 9050–9054.

    Article  CAS  PubMed  Google Scholar 

  • Malmström, A., and ()berg, L., 1981, Biosynthesis of dermatan sulfate. Assay and properties of the uronosyl C-5 epimerase, Biochem. J. 201: 489–493.

    Google Scholar 

  • Malmström, A., Fransson, L. A., Höök, M., and Lindahl, U., 1975, Biosynthesis of dermatan sulfate. I. Formation of L-iduronic acid residues, J. Biol. Chem. 250: 3419–3425.

    PubMed  Google Scholar 

  • Malmström, A., Rodén, L., Feingold, D., Jacobsson, I., Backström, G., Höök, M., and Lindahl, U., 1980, Biosynthesis of heparin. Partial purification of the uronosyl C-5 epimerase, J. Biol. Chem. 255: 3878–3883.

    Google Scholar 

  • Margolis, R. K., and Margolis, R. U., 1979, Structure and distribution of glycoproteins and glycosaminoglycans, in: Complex Carbohydrates of Nervous Tissue ( R. U. Margolis and R. K. Margolis, eds.), pp. 45–73, Plenum Press, New York.

    Chapter  Google Scholar 

  • Margolis, R. K., Salton, S., and Margolis, R., 1987, Effects of nerve growth factor-induced differentiation on the heparan sulfate of PC12 pheochromocytoma cells and comparison with developing brain, Arch. Biochem. Biophys. 257: 107–114.

    Article  CAS  PubMed  Google Scholar 

  • Margolis, R. U., Aquino, D. A., Klinger, M. M., Ripellino, J. A., and Margolis, R. K., 1986, Structure and localization of nervous tissue proteoglycans, Ann. N.Y. Acad. Sci. 481: 46–54.

    Article  CAS  PubMed  Google Scholar 

  • Markovitz, A., Cifonelli, J. A., and Dorfman, A., 1959, The biosynthesis of hyaluronic acid by group A streptococcus. VI. Biosynthesis from uridine nucleotides in cell-free extracts, J. Biol. Chem. 234: 2343–2350.

    CAS  PubMed  Google Scholar 

  • Melvin, T., and Schwartz, N. B., 1988, Pathol. Immunopathol. Res. 7: 68–72.

    Article  CAS  PubMed  Google Scholar 

  • Mian, N., 1986, Characterization of a high Mw plasma membrane bound protein and assessment of its role as a constituent of hyaluronate synthase complex, Biochem. J. 237: 343–357.

    CAS  PubMed  Google Scholar 

  • Miller, R. R., and Waechter, C. J., 1988, Partial purification and characterization of detergent solubilized

    Google Scholar 

  • N-sulfotransferase activity associated with calf brain microsomes, J. Neurochem. 51:87–94. Mitchell, D., and Hardingham, T., 1981, The effects of cycloheximide on the biosynthesis and secretion of proteoglycans by chondrocytes in culture, Biochem. J. 196:521–529.

    Google Scholar 

  • Nakanishi, S., 1983, Extracellular matrix during laminar pattern formation of neocortex in normal and reeler mutant mice, Dev. Biol. 95: 305–316.

    Article  CAS  PubMed  Google Scholar 

  • Neufeld, E. F., and Hall, C. W., 1965, Inhibition of UDP-D-glucose dehydrogenase by UDP-D-xylose: a possible regulatory mechanism, Biochem. Biophys. Res. Commun. 19: 456–460.

    Article  CAS  PubMed  Google Scholar 

  • Ng, K., and Schwartz, N. B., 1987, Solubilization of hyaluronate synthetase activity from oligodendroglioma, IXth International Conference on Glycoconjugates B55.

    Google Scholar 

  • Noonan, D. M., Horigan, E. A., Ledbetter, S. P., Vogeli, G., Sasaki, M., Yamada, Y., and Hassell, J. R., 1988, Identification of cDNA clones encoding different domains of the basement membrane heparan sulfate proteoglycan, J. Biol. Chem. 263: 16379–16387.

    CAS  PubMed  Google Scholar 

  • Norling, B., Glimelius, B., and Wasteson, A., 1984, A chondroitin sulphate proteoglycan from human cultured glial and glioma cells, Biochem. J. 221: 845–853.

    CAS  PubMed  Google Scholar 

  • Nuweyhid, N., Glaser, J. H., Johnson, J. C., Conrad, H. E., Hauser, S. C., and Hirschberg, C. B., 1986, Xylosylation and glucuronsylation reactions in rat liver Golgi apparatus and endoplasmic reticulum, J. Biol. Chem. 261: 12936–12941.

    Google Scholar 

  • Oegema, T. R., Kraft, E. L., Jourdian, G. W., and van Valen, T. R., 1984, Phosphorylation of chondroitin sulfate in proteoglycans from the Swarm rat chondrosarcoma, J. Biol. Chem. 259: 1720–1726.

    CAS  PubMed  Google Scholar 

  • Ogren, S., and Lindahl, U., 1975, Cleavage of macromolecular heparin by enzymes from mouse mastocytoma, J. Biol. Chem. 250: 2690–2695.

    CAS  PubMed  Google Scholar 

  • Oldberg, A., Hayman, E. G., and Ruoslahti, E., 1981, Isolation of a chondroitin sulfate proteoglycan from a rat yolk sac tumor and immunochemical demonstration of its cell surface localization, J. Biol. Chem. 256: 10847–10852.

    CAS  PubMed  Google Scholar 

  • Oldberg, A., Antonsson, P., and Heinegârd, D., 1987, The partial amino acid sequence from cartilage proteoglycan, deduced from a cDNA clone, contains numerous Ser-Gly sequences arranged in homologous repeats, Biochem. J. 243: 255–259.

    CAS  PubMed  Google Scholar 

  • Patterson, P. H., 1985, On the role of proteases, their inhibitors and the extracellular matrix in promoting neurite outgrowth, J. Physiol. (Paris) 80: 207–211.

    CAS  Google Scholar 

  • Pearson, C. H., Winterbottom, N., Fachre, D. S., Scott, P. G., and Carpenter, M. R., 1983, The NH2 terminal amino acid sequence of bovine skin proteodermatan sulfate, J. Biol. Chem. 258: 15101–15104.

    CAS  PubMed  Google Scholar 

  • Pejler, G., Backström, G., and Lindahl, U., 1987, Structure and affinity for antithrombin of heparan sulfate

    Google Scholar 

  • chains derived from basement membrane proteoglycans, J. Biol. Chem. 262:5036–5043.

    Google Scholar 

  • Philipson, L. H., and Schwartz, N. B., 1984, Subcellular localization of hyaluronate synthetase in oligodendroglioma cells, J. Biol. Chem. 259: 5017–5023.

    CAS  PubMed  Google Scholar 

  • Philipson, L. H., Westley, J., and Schwartz, N. B., 1985, The effect of hyaluronidase treatment of intact cells on hyaluronate synthetase activity, Biochemistry 24: 7899–7906.

    Google Scholar 

  • Pixley, S. K. R., and Cotman, C., 1986, Laminin supports short-term survival of rat septal neurons in low density, serum-free cultures, J. Neurosci. Res. 15: 1–17.

    Google Scholar 

  • Prehm, P., 1983a, Synthesis of hyaluronate in differentiated teratocarcinoma cells. Characterization of the synthease, Biochem. J. 220: 191–198.

    Google Scholar 

  • Prehm, P., 1983b, Synthesis of hyaluronate in differentiated teratocarcinoma cells. Mechanism of chain growth, Biochem. J. 211: 181–189.

    CAS  PubMed  Google Scholar 

  • Prehm, P., 1984, Hyaluronate is synthesized at plasma membranes, Biochem. J. 220: 597–600.

    CAS  PubMed  Google Scholar 

  • Prehm, P., and Mausolf, A., 1986, Isolation of streptococcal hyaluronate synthase, Biochem. J. 235: 887889.

    Google Scholar 

  • Radoff, S., and Danishefsky, I., 1984, Location on heparin of the oligosaccharide section essential for anticoagulant activity, J. Biol. Chem. 259: 166–172.

    CAS  PubMed  Google Scholar 

  • Ramóm y Cajal, S., 1984, The Neuron and the Glial Cell, p. 265, Thomas, Springfield, Ill.

    Google Scholar 

  • Rapraeger, A., Jalkanen, M., Endo, E., Koda, J., and Bernfield, M., 1985, The cell surface proteoglycan from mouse mammary epithelial cells bears chondroitin sulfate and heparin sulfate glycosamino-glycans, J. Biol. Chem. 260: 11046–11052.

    CAS  PubMed  Google Scholar 

  • Ratner, N., Bunge, R., and Glaser, L., 1985, A neuronal cell surface heparan sulfate proteoglycan is required for dorsal root ganglion neuron stimulation of Schwann cell proliferation, J. Cell Biol. 101: 744–754.

    Article  CAS  PubMed  Google Scholar 

  • Reddy, R., Zehring, W., Wheeler, D., Pirrotta, V., Hadfield, C., Hall, J., and Rosbash, M., 1986, Molecular analysis of the period locus in Drosophila melanogaster and identification of a transcript involved in biological rhythms, Cell 38: 701–710.

    Article  Google Scholar 

  • Richardson, R. R., 1985, Congenital genetic murine (ch) hydrocephalus: A structural model of cellular dysplasia and disorganization with the molecular locus of deficient proteoglycan synthesis, Child’s Nerv. Syst. 1:87–99.

    Google Scholar 

  • Rieger, F., Daniloff, J. Pincon-Raymond, M., Crossin, K., Grumet, M., and Edelman, G., 1986, Neuronal cell adhesion molecules and cytotactin are colocalized at the node of Ranvier, J. Cell Biol. 103:379391.

    Google Scholar 

  • Riesenfeld, J., Höök, M., and Lindahl, U., 1982, Biosynthesis of heparin. Concerted action of early polymer-modification reactions, J. Biol. Chem. 257: 421–425.

    CAS  PubMed  Google Scholar 

  • Riggott, M., and Moody, S., 1987, Distribution of laminin and fibronectin along peripheral trigeminal axon pathways in the developing chick, J. Comp. Neurol. 258: 580–596.

    Article  CAS  PubMed  Google Scholar 

  • Ripellino, J. A., Bailo, M., Margolis, R. U., and Margolis, R. K., 1988, Light and electronmicroscopic studies on the localization of hyaluronic acid in developing rat cerebellum, J. Cell Biol. 106: 845–855.

    Article  CAS  PubMed  Google Scholar 

  • Robinson, H. C., Horner, A. A., Höök, M., Ogren, S., and Lindahl, U., 1978, A proteoglycan form of heparin and its degradation to single-chain molecules, J. Biol. Chem. 253: 6687–6693.

    CAS  PubMed  Google Scholar 

  • Robinson, J., Viti, M., and Höök, M., 1984, Structure and properties of an under-sulfated heparan sulfate proteoglycan synthesized by a rat hepatoma cell line, J. Cell Biol. 98: 946–953.

    Article  CAS  PubMed  Google Scholar 

  • Rodén, L., 1980, Structure and metabolism of connective tissue proteoglycans, in: The Biochemistry of Glycoproteins and Proteoglycans ( W. Lennarz, ed.), pp. 267–314, Plenum Press, New York.

    Chapter  Google Scholar 

  • Rodén, L., Baker, J. R., Helting, T., Schwartz, N. B., Stoolmiller, A., Yamagata, S., and Yamagata, T., 1972, Biosynthesis of chondroitin sulfate, Methods Enzymol. 28: 638–676.

    Article  Google Scholar 

  • Rodén, L., Koerner, T., Olsen, C., and Schwartz, N. B., 1985, Mechanisms of chain initiation in the biosynthesis of connective tissue polysaccharides, Fed. Proc. 44: 373–389.

    PubMed  Google Scholar 

  • Rogers, S., Edson, K., Letourneau, P., and McLoon, S., 1986, Distribution of laminin in the developing peripheral nervous system of the chick, Dev. Biol. 113: 429–435.

    Article  CAS  PubMed  Google Scholar 

  • Rosamond, S., Brown, L., Gomez, C., Braciale, T. J., and Schwartz, B. D., 1987, Xyloside inhibits synthesis of the class II-associated chondroitin sulfate proteoglycan and antigen presentation events, J. lmmunol. 139: 1946–1951.

    CAS  Google Scholar 

  • Rosenberg, R. D., 1985, Role of heparin and heparinlike molecules in thrombosis and atherosclerosis, Fed. Proc. 44: 404–409.

    CAS  PubMed  Google Scholar 

  • Sai, S., Tanaka, T., Kosher, R. A., and Tanzer, M. C., 1986, Cloning and sequence analysis of a partial cDNA for chicken cartilage proteoglycan core protein, Proc. Natl. Acad. Sci. USA 83: 5081–5085.

    Google Scholar 

  • Sanes, J., 1983, Roles of extracellular matrix in neural development, Annu. Rev. Physiol. 45:581–600. Schubert, D., 1984, Developmental Biology of Cultured Nerve, Muscle, and Glia, Academic Press, New York.

    Google Scholar 

  • Schubert, D., and LaCorbiere, M., 1980a, Altered collagen and glycosaminoglycan secretion by a skeletal muscle myoblast variant, J. Biol. Chem. 255:11557–11563.

    CAS  Google Scholar 

  • Schubert, D., and LaCorbiere, M., 1980b, Role of a 16S glycoprotein complex in cellular adhesion, Proc. Natl. Acad. Sci. USA 77: 4137–4141.

    Article  CAS  PubMed  Google Scholar 

  • Schubert, D., and LaCorbiere, M., 1982a, The specificity of extracellular glycoprotein complexes in mediating cellular adhesion, J. Neurosci. 2: 82–89.

    CAS  PubMed  Google Scholar 

  • Schubert, D., and LaCorbiere, M., 1982b, Properties of extracellular adhesion-mediating particles in myoblast clone and its adhesion-deficient variant, J. Cell Biol. 94: 108–114.

    Article  CAS  PubMed  Google Scholar 

  • Schubert, D., and LaCorbiere, M., 1985, Isolation of a cell-surface receptor for chick neural retina ad-herons, J. Cell Biol. 100: 56–63.

    Article  CAS  PubMed  Google Scholar 

  • Schubert, D., LaCorbiere, M., Klier, F., and Birdwell, C., 1983a, A role for adherons in neural retina cell adhesion, J. Cell Biol. 96: 990–998.

    Article  CAS  PubMed  Google Scholar 

  • Schubert, D., LaCorbiere, M., Klier, F., and Birdwell, C., 1983b, The structure and function of myoblast adherons, Cold Spring Harbor Symp. Quant. Biol. 48: 539–549.

    Article  CAS  PubMed  Google Scholar 

  • Schubert, D., LaCorbiere, M., and Esch, F., 1986, A chick neural retina adhesion and survival molecule is a retinol-binding protein, J. Cell Biol. 102: 2295–2301.

    Article  CAS  PubMed  Google Scholar 

  • Schwartz, N. B., 1975, Biosynthesis of chondroitin sulfate: Immunoprecipitation of interacting xylosyltransferase and galactosyltransferase, FEBS Lett. 49: 342–345.

    Article  CAS  PubMed  Google Scholar 

  • Schwartz, N. B., 1976, Biosynthesis of chondroitin sulfate: Role of phospholipids in the activity of UDP-Dgalactose:D-xylose galactosyltransferase, J. Biol. Chem. 251: 285–292.

    CAS  PubMed  Google Scholar 

  • Schwartz, N. B., 1977, Regulation of chondroitin sulfate proteoglycan chondroitin sulfate chains and core protein, J. Biol. Chem. 252: 6316–6321.

    CAS  PubMed  Google Scholar 

  • Schwartz, N. B., 1979, Synthesis and secretion of an altered chondroitin sulfate proteoglycan, J. Biol. Chem. 254: 2272–2277.

    Google Scholar 

  • Schwartz, N. B, 1982, Regulatory mechanisms in proteoglycan biosynthesis, in: Glycosaminoglycans and Proteoglycans in Physiological and Pathologic Processes of Body Systems ( R. S. Varma and R. Vanua, eds.), pp. 41–54, Karger, Basel.

    Google Scholar 

  • Schwartz, N. B., 1986, Carbohydrate metabolism II: Special pathways, in: Mammalian Biochemistry ( T. M. Devlin, ed.), pp. 406–437, Wiley, New York.

    Google Scholar 

  • Schwartz, N. B., and Dorfman, A., 1975, Purification of rat chondrosarcoma xylosyltransferase, Arch. Biochem. 171: 136–144.

    Article  CAS  PubMed  Google Scholar 

  • Schwartz, N. B., and Rodén, L., 1974a, Biosynthesis of chondroitin sulfate: Interaction between xylosyltransferase and galactosyltransferase, Biochem. Biophys. Res. Commun. 56: 717–724.

    Article  CAS  PubMed  Google Scholar 

  • Schwartz, N. B., and Rodén, L., 1974b, Biosynthesis of chondroitin sulfate: Purification of UDP-Dxylose:core protein 13-D-xylosyltransferase by affinity chromatography, Carbohydr. Res. 37: 167–180.

    Article  CAS  PubMed  Google Scholar 

  • Schwartz, N. B., and Rodén, L., 1975, Biosynthesis of chondroitin sulfate: Solubilization of chondroitin sulfate glycosyltransferases and partial purification of UDP-D-galactose:D-xylose galactosyltransferase, J. Biol. Chem. 250: 5200–5207.

    CAS  PubMed  Google Scholar 

  • Schwartz, N. B., Habib, G., Campbell, S., D’Elvlyn, D., Gartner, M., Krueger, R., Olson, C., and Philipson, L., 1985, Synthesis and structure of proteoglycan core protein, Fed. Proc. 44: 369–372.

    CAS  PubMed  Google Scholar 

  • Shin, H.-S., Bargiello, T., Clark, B., Jackson, F., and Young, M., 1985, An unusual coding sequence from a Drosophila clock gene is conserved in vertebrates, Nature 317: 445–448.

    Article  CAS  PubMed  Google Scholar 

  • Sievers, J., Hartmann, D., Gude, S., Pehlemann, F., and Berry, M., 1987, Influences of meningeal cells on the development of the brain, in: Mesenchymal—Epithelial Interactions in Neural Development ( J. K. Wolff, J. Sievers, and M. Berry, eds.), pp. 171–188, Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Siewert, J., and Strominger, J., 1967, Bacitracin: An inhibitor of the dephosphorylation of lipid pyrophosphate, an intermediate in biosynthesis of the peptidoglycan of bacterial cell walls, Proc. Natl. Acad. Sci. USA 57: 767–770.

    Article  CAS  PubMed  Google Scholar 

  • Silver, J., and Sidman, R., 1980, A mechanism for the guidance and topographic patterning of retinal ganglion cell axons, J. Comp. Neurol. 189: 101–111.

    Article  CAS  PubMed  Google Scholar 

  • Smalheiser, N., 1989, Morphologic plasticity of rapid-onset neuntes in NG108–15 cells stimulated by substratum-bound laminin, Devel. Brain Res. 45: 39–47.

    Article  CAS  Google Scholar 

  • Smalheiser, N., and Schwartz, N., 1987, Kinetic analysis of `rapid onset’ neurite formation in NG108–15 cells reveals a dual role for substratum-bound laminin, Dev. Brain Res. 34: 111–121.

    Article  Google Scholar 

  • Smalheiser, N., Crain, S., and Reid, L., 1982, Retinal ganglion-cell outgrowth upon substrata derived from basement membrane-secreting tumor and CNS tissues, Soc. Neurosci. Abstr. 8: 927.

    Google Scholar 

  • Smalheiser, N., Crain, S., and Reid, L., 1984, Laminin as a substrate for retinal axons in vitro, Dev. Brain Res. 12: 136–140.

    Article  CAS  Google Scholar 

  • Stamatoglou, S. C., and Keller, J., 1983, Correlation between cell substrate attachment in vitro and cell surface heparan sulfate affinity for fibronectin and collagen, J. Cell Biol. 96: 1820–1823.

    Article  CAS  PubMed  Google Scholar 

  • Stewart, G. R., and Pearlman, A. L., 1987, Fibronectin-like immunoreactivity in the developing cerebral cortex, J. Neurosci. 7: 3325–3333.

    CAS  PubMed  Google Scholar 

  • Stoolmiller, A. C., and Dorfman, A., 1967, Mechanism of hyaluronic acid (HA) biosynthesis by group A streptococcus, Fed. Proc. 26: 2.

    Google Scholar 

  • Stoolmiller, A., and Dorfman, A., 1969, The biosynthesis of hyaluronic acid by streptococcus, J. Biol. Chem. 244: 236–240.

    CAS  PubMed  Google Scholar 

  • Stoolmiller, A. C., Schwartz, N. B., and Dorfman, A., 1975, Biosynthesis of chondroitin 4-sulfate proteoglycan by a transplantable rat chondrosarcoma, Arch. Biochem. Biophys. 171: 124–135.

    Article  CAS  PubMed  Google Scholar 

  • Sugahara, K., and Schwartz, N. B., 1979, Defect in phosphoadenosylphosphosulfate formation in brachymorphic mice, Proc. Natl. Acad. Sci. USA 76: 6615–6618.

    Article  CAS  PubMed  Google Scholar 

  • Sugahara, K., and Schwartz, N. B., 1982a, A defect in 3’-phosphoadenosine 5’-phosphosulfate formation in brachymorphic mice, Arch. Biochem. Biophys. 214: 589–601.

    Article  CAS  PubMed  Google Scholar 

  • Sugahara, K., and Schwartz, N. B., 1982b, Tissue distribution of the defect in PAPS synthesis in brachymorphic mice, Arch. Biochem. Biophys. 214: 602–609.

    Article  CAS  PubMed  Google Scholar 

  • Sugahara, K., Schwartz, N. B., and Dorfman, A., 1979, Biosynthesis of hyaluronic acid by streptococcus, J. Biol. Chem. 254: 6252–6261.

    CAS  PubMed  Google Scholar 

  • Sugahara, K., Cifonelli, A. J., and Dorfman, A., 1981, Xylosylation of nascent peptides of chick cartilage chondroitin sulfate proteoglycan, Fed. Proc. 40: 1705.

    Google Scholar 

  • Szakal, A. K., Kosco, M. H., and Tew, J. G., 1988, A novel in vivo follicular dendritic cell-dependent iccosome-mediated mechanism for delivery of antigen to antigen-processing cells, J. Immunol. 2: 341–353.

    Google Scholar 

  • Torack, R. M., and Grawe, L., 1980, Subependymal glycosaminoglycan networks in adult and developing rat brain, Histochemistry 68: 55–65.

    Article  CAS  PubMed  Google Scholar 

  • Treadwell, B. V., Mankin, D. P., Ho, P. K., and Mankin, H. J., 1980, Cell-free synthesis of cartilage proteins: Partial identification of proteoglycan core and link proteins, Biochemistry 19: 2269–2275.

    Article  CAS  PubMed  Google Scholar 

  • Triscott, M. X., and van der Rijn, I., 1986, Solubilization of hyaluronic acid synthetic activity from streptococci and its activation with phospholipids, J. Biol. Chem. 261: 6004–6009.

    CAS  PubMed  Google Scholar 

  • Unanue E. R. Antigen-presenting function of the macrophage, Annu. Rev. Immunol. 2:395-428.

    Article  CAS  PubMed  Google Scholar 

  • Upholt, W. B., Vertel, B. M., and Dorfman, A., 1979, Translation and characterization of messenger RNAs in differentiating chicken cartilage, Proc. Natl. Acad. Sci. USA 76: 4847–4851.

    Article  CAS  PubMed  Google Scholar 

  • Vertel, B. M., Upholt, W. B., and Dorfman, A., 1984, Cell-free translation of messenger RNA for chondroitin sulfate proteoglycan core protein in rat cartilage, Biochem. J. 217: 259–263.

    CAS  PubMed  Google Scholar 

  • Waite, K. A., Mugnai, G., and Culp, L. A., 1987, A second cell-binding domain on fibronectin (RGDS-independent) for neurite extension of human neuroblastoma cells, Exp. Cell Res. 169: 311–327.

    Article  CAS  PubMed  Google Scholar 

  • Wekerle, H., Linington, C., Lassmann, H., and Meyerann, R., 1986, Cellular immune reactivity within the CNS, Trends Neurosci. 9: 273–277.

    Article  Google Scholar 

  • Wewer, U. M., Taraboletti, G., Sobel, M., Albrechtsen, R., and Liotta, L., 1987, Role of laminin receptor in tumor cell migration, Cancer Res. 47: 5691–5698.

    CAS  PubMed  Google Scholar 

  • Woods, A., Couchman, J. R., Johansson, S., and Höök, M., 1986, Adhesion and cytoskeletal organisation of fibroblasts in response to fibronectin fragments, EMBO J. 5: 665–670.

    CAS  PubMed  Google Scholar 

  • Wu, T.-C., Wan, Y.-J., Chung, A., and Damjanov, I., 1983, Immunohistochemical localization of entactin and laminin in mouse embryos and fetuses, Dey. Biol. 100: 496–505.

    Article  CAS  Google Scholar 

  • Yamamoto, T., Iwasaki, Y., and Konno, H., 1987, Laminin A messenger produced by central neurons? Immunohistochemical demonstration of its unique distribution, Neurology 37 (Suppl.1): 234.

    Google Scholar 

  • Zum, A., Nick, H., and Monard, D., 1988, A glia-derived nexin promotes neurite outgrowth in cultured chick sympathetic neurons, Del). Neurosci. 10: 17–24.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schwartz, N.B., Smalheiser, N.R. (1989). Biosynthesis of Glycosaminoglycans and Proteoglycans. In: Margolis, R.U., Margolis, R.K. (eds) Neurobiology of Glycoconjugates. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5955-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5955-6_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-5957-0

  • Online ISBN: 978-1-4757-5955-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics