Skip to main content

DNA Fragmentation in Mammalian Apoptosis and Tissue Homeostasis

  • Chapter
Molecular Mechanisms of Programmed Cell Death
  • 152 Accesses

Abstract

Apoptosis is a highly regulated physiological process critical in development and tissue homeostasis. Abnormal apoptosis can lead to disease conditions including neurodegeneration, autoimmunity and cancer. DNA fragmentation is an integral part of apoptosis and has long been suspected to be of critical importance in cleaning up potentially antigenic DNA and genetic materials capable of inducing neoplasmic transformation in neighboring cells. Direct evidence for this role of DNA fragmentation in apoptosis however, is still lacking. The identification of a heterodimeric DNA fragmentation factor composed of a 45 and 40 kDa subunit (termed DFF45 and DFF40, or ICAD for Inhibitor of Caspase Activated DNase and CAD for Caspase Activated DNase, respectively) as well as endonuclease G (EndoG) provides a timely opportunity for addressing the physiological significance of DNA fragmentation in apoptosis and tissue homeostasis. We previously generated a DFF45 mutant mouse in which the DFF activity is abolished. We found that DFF45-deficient thymocytes are resistant to DNA fragmentation both in vivo and in cultured primary cells exposed to various apoptotic stimuli. Interestingly, DFF45-deficient thymocytes and mouse embryonic fibroblasts (MEFs) are partially resistant to apoptosis in response to several apoptotic-inducing agents. There are more granule cells in the dentate gyrus of the hippocampal formation in DFF45 mutant mice than in normal control mice. This increased neuronal cell number correlates with enhanced spatial and non-spatial learning and memory retention in DFF45 mutant mice compared with control mice. These results suggest that DFF45 is critical for DNA fragmentation and a deficiency in DFF45 can affect timely completion of apoptosis and consequently tissue homeostasis and proper cellular function. Likely due to the unaffected EndoG activity however, residual DNA fragmentation can be found in DFF45-deficient splenocytes and MEFs. In a collaborative effort, we are generating EndoG mutant mice and mice with combined deficiencies of DFF45 and EndoG to investigate how DFF and EndoG jointly function to insure proper apoptosis and tissue homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrams, J.M. (1999). An emerging blueprint for apoptosis in Drosophila. Trends Cell Biol. 9, 435–440.

    Article  PubMed  CAS  Google Scholar 

  • Adachi, M., Suematsu, S., Kondo, T., Ogasawara, J., Tanaka, T., Yoshida, N., and Nagata, S. (1995). Targeted mutation in the Fas gene causes hyperplasia in peripheral lymphoid organs and liver. Nat. Genet. 11, 294–300.

    Article  PubMed  CAS  Google Scholar 

  • Adams, J.M., and Cory, S. (1998). The Bcl-2 protein family: arbiters of cell survival. Science 281, 1322–1326.

    Article  PubMed  CAS  Google Scholar 

  • Boulares, A.H., Zoltoski, A.J., Yakovlev, A., Xu, M., and Smulson, M.E. (2001). Roles of DNA fragmentation factor and poly(ADP-ribose) polymerase in an amplification phase of TNF-induced apoptosis. J. Biol. Chem. 276, 38185–38192.

    PubMed  CAS  Google Scholar 

  • Budihardjo, I., Oliver, H., Lutter, M., Luo, X., and Wang, X. (1999). Biochemical pathways of caspase activation during apoptosis. Annu. Rev. Cell Dev. Biol. 15, 269–290.

    Article  PubMed  CAS  Google Scholar 

  • Caron, H., Peter, M., van Sluis, P., Speleman, F., de Kraker, J. et al. (1995). Evidence for two tumour suppressor loci on chromosomal bands 1p35–36 involved in neuroblastoma: one probably imprinted, another associated with N-myc amplification. Hum. Mol. Genet. 4, 535–539.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Y.Z., Soeda, E., Yang, H.W., Takita, J., Chai, L., Horii, A., Inazawa, J., Ohki, M., and Hayashi, Y. (2001). Homozygous deletion in a neuroblastoma cell line defined by a high-density STS map spanning human chromosome band 1p36. Genes Chromosomes Cancer 31, 326–332.

    Article  PubMed  CAS  Google Scholar 

  • Cote, J., and Ruiz-Carrilo, A. (1993). Primers for mitochondrial DNA replication generated by endonuclease G. Science 261, 765–769.

    Article  PubMed  CAS  Google Scholar 

  • Counis, M.F., and Torriglia, A. (2000). Dnases and apoptosis. Biochem. Cell Biol. 78, 405–414.

    Article  PubMed  CAS  Google Scholar 

  • Enari, M., Sakahira, H., Yokoyama, H., Okawa, K., Iwamatsu, A., and Nagata, S. (1998). A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391, 43–50.

    Article  PubMed  CAS  Google Scholar 

  • Fadok, V.A., and Henson, P.M. (1998). Apoptosis: getting rid of the bodies. Curr. Biol. 8, R693–695.

    Article  PubMed  CAS  Google Scholar 

  • Gross, A., McDonnell, J.M., and Korsmeyer, S.J. (1999). Bcl-2 family members and the mitochondria in apoptosis. Genes Dev. 13, 1899–1911.

    Article  PubMed  CAS  Google Scholar 

  • Halenbeck, R., MacDonald, H., Roulston, A., Chen, T.T., Conroy, L., and Williams, L.T. (1998). CPAN, a human nuclease regulated by the caspase-sensitive inhibitor DFF45. Curr. Biol. 8, 537–540.

    Article  PubMed  CAS  Google Scholar 

  • Hengartner, M.O. (2001). Apoptosis: corralling the corpses. Cell 104, 325–328.

    Google Scholar 

  • Hobbs, J.A., Cho, S.Y., Roberts, T.J., Sriram, V., Zhang, J., Xu, M., and Brutkiewicz, R.R. (2001). Selective loss of NKT cells by apoptosis following infection with lymphocytic choriomeningitis virus. J. Virol. 75, 10746–10754.

    Article  PubMed  CAS  Google Scholar 

  • Horvitz, H.R. (1999). Genetic control of programmed cell death in the nematode Caenorhabditis elegans. Cancer Res. 59, 1701s - 1706s.

    PubMed  CAS  Google Scholar 

  • Ikeda, S., and Ozaki, K. (1997). Action of mitochondrial endonuclease G on DNA damaged by L-ascorbic acid, peplomycin, and cis-diamminedichloroplatinum (II). Biochem. Biophys. Res. Comm. 235, 291–294.

    Article  PubMed  CAS  Google Scholar 

  • Imyanitov, E.N., Birrell, G.W., Filippovich, I., Sorokina, N., Arnold, J., Mould, M.A., Wright, K., Walsh, M., Mok, S.C., Lavin, M.F. et al. (1999). Frequent loss of heterozygosity at 1p36 in ovarian adenocarcinomas but the gene encoding p73 is unlikely to be the target. Oncogene 18, 4640–4642.

    Article  PubMed  CAS  Google Scholar 

  • Jacobson, M.D., Weil, M., and Raff, M.C. (1997). Programmed cell death in animal development. Cell 88, 347–354.

    Article  PubMed  CAS  Google Scholar 

  • Judson, H., van Roy, N., Strain, L., Vandesompele, J., Van Gele, M., Speleman, F., and Bonthron, D.T. (2000). Structure and mutation analysis of the gene encoding DNA fragmentation factor 40 (caspase-activated nuclease), a candidate neuroblastoma tumour suppressor gene. Hum. Genet. 106, 406–413.

    Article  PubMed  CAS  Google Scholar 

  • Kawane, K., Fukuyama, H., Adachi, M., Sakahira, H., Copeland, N.G., Gilbert, D.J., Jenkin, N.A., and Nagata, S. (1999). Structure and promoter analysis of murine CAD and ICAD genes. Cell Death Differ. 6, 745–752.

    Article  PubMed  CAS  Google Scholar 

  • Kawane, K., Fukuyama, H., Kondoh, G., Takeda, J., Ohsawa, Y., Uchiyama, Y., and Nagata, S. (2001). Requirement of DNase II for definitive erythropoiesis in the mouse fetal liver. Science 292, 1546–1549.

    Article  PubMed  CAS  Google Scholar 

  • Kempermann, G., Kuhn, H.G., and Gage, F.H. (1997). More hippocampal neurons in adult mice living in an enriched environment. Nature 386, 493–495.

    Article  PubMed  CAS  Google Scholar 

  • Leek, J.P., Can, I.M., Bell, S.M., Markham, A.F., and Lench, N.J. (1997). Assignment of the DNA fragmentation factor gene (DFFA) to human chromosome bands 1p36.3->p36.2 by in situ hybridization. Cytogenet. Cell Genet. 79, 212–213.

    Article  PubMed  CAS  Google Scholar 

  • Li, L.Y., Luo, X., and Wang, X. (2001). Endonuclease G (EndoG) is an apoptotic DNase when released from Mitochondria. Nature 412, 95–99.

    Article  PubMed  CAS  Google Scholar 

  • Lindsten, T., Ross, A:J., King, A., Zong, W.X., Rathmell, J.C., Shiels, H.A., Ulrich, E., Waymire, K.G., Mahar, P., Frauwirth, K., et al. (2000). The combined functions of proapoptotic Bc1–2 family members bak and bax are essential for normal development of multiple tissues. Mol. Cell 6, 1389–1399.

    Google Scholar 

  • Liu, X., Zou, H., Slaughter, C., and Wang, X. (1997). DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 89, 175–184.

    Article  PubMed  CAS  Google Scholar 

  • Liu, X., Li, P., Widlak, P., Zou, H., Luo, X., Garrard, W.T., and Wang, X. (1998). DFF40 induces DNA fragmentation and chromatin condensation during apoptosis. Proc. Natl. Acad. Sci. USA 95, 8461–8466.

    Article  PubMed  CAS  Google Scholar 

  • Mcllroy, D., Tanaka, M., Sakahira, H., Fukuyama, H., Suzuki, M., Yamamura, K., Ohsawa, Y., Uchiyama, Y., and Nagata, S. (2000). An auxiliary mode of apoptotic DNA fragmentation provided by phagocytes. Genes Dev. 14, 549–558.

    Google Scholar 

  • McQuade, J.S., Vorhees, C., Xu, M., and Zhang, J. (2002). Enhanced non-spatial learning and memory in DFF45 knockout mice compared to wild-type mice. Physiol. Beh. 76, 315–320.

    Article  CAS  Google Scholar 

  • Milner, B., Squire, L.R., and Kandel, E.R. (1998). Cognitive neuroscience and the study of memory. Neuron 20, 445–468.

    Article  PubMed  CAS  Google Scholar 

  • Nagata, S. (1997). Apoptosis by death factor. Cell 88, 355–365.

    Article  PubMed  CAS  Google Scholar 

  • Nagata, S. (2000). Apoptotic DNA fragmentation. Exp. Cell Res. 256, 12–18.

    Article  PubMed  CAS  Google Scholar 

  • Napirei, M., Karsunky, H., Zevnik, B, Stephan, H., Mannherz, H.G., and Moroy, T. (2000). Features of systemic lupus erythematosus in Dnasel-deficient mice. Nat. Genet. 25, 177–181.

    Article  PubMed  CAS  Google Scholar 

  • Oberhammer, F., Wilson, J.W., Dive, C., Morris, I.D., Hickman, J.A., Wakeling, A.E., Walker, P.R., and Sikorska, M. (1993). Apoptotic death in epithelial cells: cleavage of DNA to 300 and/or 50 kb fragments prior to or in the absence of internucleosomal fragmentation. EMBO J. 12, 3679–3684.

    PubMed  CAS  Google Scholar 

  • Ohira, M., Kageyama, H., Mihara, M., Furuta, S., Machida, T., Shishikura, T., Takayasu, H., Islam, A., Nakamura, Y., Takahashi, M. et al. (2000). Identification and characterization of a 500-kb homozygously deleted region at 1p36.2-p36.3 in a neuroblastoma cell line. Oncogene 19, 4302–4307.

    Article  PubMed  CAS  Google Scholar 

  • Oliveri, M., Dap, A., Cantoni, C., Lunardi, C., Millo, R., and Puccetti, A. (2001). DNase I mediates internucleosomal DNA degradation in human cells undergoing drug-induced apoptosis. Eur. J. Immunol. 31, 743–751.

    Article  PubMed  CAS  Google Scholar 

  • Parrish, J., Li, L., Klotz, K., Ledwich, D., Wang, X., and Xue, D. (2001). C. elegans mitochondrial endonuclease G is important for DNA fragmentation and progression of apoptosis. Nature 412, 90–94.

    Article  PubMed  CAS  Google Scholar 

  • Peitsch, M.C., Mannherz, H.G., and Tschopp, J. (1994). The apoptosis endonucleases: cleaning up after cell death? Trends Cell Biol. 4, 37–41.

    Article  PubMed  CAS  Google Scholar 

  • Ranger, A.M„ Malynn, B.A., and Korsmeyer, S.J. (2001). Mouse models of cell death. Nat. Genet. 28, 113–118.

    CAS  Google Scholar 

  • Ruiz-Carrillo, A., and Renaud, J. (1987). Endonuclease G: a (dG)n X (dC)n-specific DNase from higher eukaryotes. EMBO J. 6, 401–407.

    PubMed  CAS  Google Scholar 

  • Sakahira, H., Enari, M., and Nagata, S. (1998). Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature 391, 96–99.

    Article  PubMed  CAS  Google Scholar 

  • Sakahira, H., Enari, M., Ohsawa, Y., Uchiyama, Y., and Nagata, S. (1999). Apoptotic nuclear morphological change without DNA fragmentation, Curr. Biol. 9, 543–546.

    Article  PubMed  CAS  Google Scholar 

  • Samejima, K., Tone, S., and Earnshaw, W.C. (2001). CAD/DFF40 nuclease is dispensable for high molecular weight DNA cleavage and stage I chromatin condensation in apoptosis. J. Biol. Chem. 276, 45427–45432.

    Article  PubMed  CAS  Google Scholar 

  • Slane, J., Lee, H., Vorhees, C., Zhang, J., and Xu, M. (2000). DNA fragmentation factor 45 deficient mice exhibit enhanced spatial learning and memory compared to wild-type control mice. Brain Res, 867, 70–79.

    Article  PubMed  CAS  Google Scholar 

  • Strasser, A., Whittingham, S., Vaux, D.L., Bath, M.L., Adams, J.M., Cory, S., and Harris, A.W. (1991). Enforced BCL2 expression in B-lymphoid cells prolongs antibody responses and elicits autoimmune disease. Proc. Natl. Acad. Sci. USA 88, 8661–8665.

    Article  PubMed  CAS  Google Scholar 

  • Strasser, A., O’Connor, L., and Dixit, V.M. (2000). Apoptosis signaling. Annu. Rev. Biochem. 69, 217–245.

    Article  PubMed  CAS  Google Scholar 

  • Susin, S.A., Lorenzo, H.K., Zamzami, N, Marzo, I., Snow, B.E., Brothers, G.M., Mangion, J., Jacotot, E., Costantini, P., Loeffler, M., et al. (1999). Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397, 441–446.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, D., Du, C., Xu, M., Wang, X., and Ley, T.J. (2000). DFF45/ICAD can be directly process by granzyme B during the induction of apoptosis. Immunity 12, 621–632.

    Article  PubMed  CAS  Google Scholar 

  • Wakeland, E.K., Liu, K., Graham, R.R., and Behrens, T.W. (2001). Delineating the genetic basis of systemic lupus erythematosis. Immunity 15, 397–408.

    Article  PubMed  CAS  Google Scholar 

  • Wang, X. (2001). The expanding role of mitochondria in apoptosis. Genes Dev. 15, 2922–2933.

    PubMed  CAS  Google Scholar 

  • Widlak, P., Li, P., Wang, X., and Garrard, W.T. (2000). Cleavage preferences of the apoptotic endonuclease DFF40 (caspase-activated DNase or nuclease) on naked DNA and chromatin substrates. J. Biol. Chem. 275, 8226–8232.

    Article  PubMed  CAS  Google Scholar 

  • Widlak, P., Li, L.Y., Wang, X., and Garrard, W.T. (2001). Action of recombinant human apoptotic endonuclease G on naked DNA and chromatin substrates: cooperation with exonuclease and DNase I. J. Biol. Chem. 276, 48404–48409.

    PubMed  CAS  Google Scholar 

  • Wu, Y-C., Stanfield, G.M., and Horvitz, H.R. (2000). NUC-1, a Caenorhabditis elegans Dnase II homolog, functions in an intermediate step of DNA degradation during apoptosis. Genes Dev. 14, 536–548.

    PubMed  CAS  Google Scholar 

  • Yakovlev, A.G., Di, X., Movsesyan, V., Mullins, P.G.M., Wang, G., Boulares, H., Zhang, J., Xu, M., and Faden, A.I. (2001). Presence of DNA fragmentation and lack of neuroprotective effect in DFF45 knockout mice subjected to traumatic brain injury. Mol. Medicine 7, 205–216.

    CAS  Google Scholar 

  • Zhang, J., Liu, X., Scherer, D.C., Van Kaer, L., Wang, X., and Xu, M. (1998). Resistance to DNA fragmentation and chromatin condensation in mice lacking the DNA fragmentation factor 45. Proc. Natl. Acad. Sci. USA 95, 12480–12485.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, J., Wang, X., Bove, K.E., and Xu, M. (1999). DNA fragmentation factor 45-deficient cells are more resistant to apoptosis and exhibit different dying morphology than wild-type control cells. J. Biol. Chem. 274, 37450–37454.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, J., Lee, H., Lou, D.W., Boivin, G., and Xu, M. (2000). Lack of obvious 50 kilobase pair DNA fragments in DNA fragmentation factor 45-deficient thymocytes upon activation of apoptosis. Biochem. Biophys. Res. Comm. 274, 225–229.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, J., and Xu, M. (2000). DNA fragmentation in apoptosis. Cell Res. 10, 205–211.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, J., Lee, H., Agarwala, A., Lou, D.W., and Xu, M. (2001). DNA fragmentation factor 45 mutant mice exhibit resistance to kainic acid-induced neuronal cell death. Biochem. Biophy. Res. Comm. 285, 1143–1149.

    Article  CAS  Google Scholar 

  • Zhang, J., and Xu, M. (2002). Apoptotic DNA degradation and tissue homeostasis. Trends Cell Biol. 12, 84–89.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, J., Xu, M., and Aronow, B. (2002). Expression profiles of 109 apoptosis pathway-related genes in 82 mouse tissues and experimental conditions. Biochem. Biophy. Res. Comm. 297, 537–544.

    Article  CAS  Google Scholar 

  • Zheng, T.S., Hunot, S., Kuida, K., Momoi, T., Srinivasan, A., Nicholson, D.W., Lazebnik, Y., and Flavell, R.A. (2000). Deficiency in caspase-9 or caspase-3 induces compensatory caspase activation. Nat. Med. 6, 1241–1247.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Xu, M., Zhang, J. (2003). DNA Fragmentation in Mammalian Apoptosis and Tissue Homeostasis. In: Shi, Y., Cidlowski, J.A., Scott, D., Wu, JR., Shi, YB. (eds) Molecular Mechanisms of Programmed Cell Death. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5890-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5890-0_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3404-8

  • Online ISBN: 978-1-4757-5890-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics