Skip to main content

Analysis of Glial Scarring in the Mammalian CNS with a GFAP cDNA Probe

  • Chapter
Molecular Aspects of Development and Aging of the Nervous System

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 265))

Abstract

Reactive gliosis, leading to the formation of glial scar, is the response of astrocytes to CNS injury. It is an ubiquitous reaction observed in a large number of pathological conditions, such as mechanical and chemical lesions, as well as degenerative processes (Fulcrand and Privat, 1977; Eng and De Armond, 1982). This reaction is twofold, being characterized by an astrocyte multiplication (hyperplasia) as well as an hypertrophy of the perikarya and processes (Hain et al., 1960; Nathaniel and Nathaniel, 1981). The main intracellular event is an increase of the number of gliafilaments, paralleled by a raise in GFAP immunoreactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Balcarek, J. M., and Cowan, N. J., 1985, Structure of the mouse glial fibrillary acidic protein gene. implications for the evolution of the intermediate filament multigene family, Nucleic Acid Res. 13: 5527–5543.

    Google Scholar 

  • Bhattacharya, B., Mandai, C., Basu, S., and Sarkar, P. K., 1987, Regulation of a-and ß-tubulin mRNAs in rat brain during synaptogenesis, Mol. Brain Res. 2:159–162.

    Google Scholar 

  • Bigbee, J. W., Bigner, D. D., Pegram, C., and Eng, L. F., 1983, Study of glial fibrillary acidic protein in a human glioma cell line grown in culture and as a solid tumor, J. Neurochem. 40:460–467.

    Google Scholar 

  • Dahl, D., and Bignami, A., 1973, Glial fibrillary acidic protein from normal human brain. Purification and properties, Brain Res. 57: 343–360.

    Article  Google Scholar 

  • De Armond, S. J, Fajardo, M., Naughton, S. A., and Eng, L.F., 1983, Degradation of glial fibrillary acidic protein by a calcium dependent proteinase an electroblot study, Brain Res. 262: 275–282.

    Google Scholar 

  • De Armond, S. J., Lee, Y. L., Kretzschmar, H. A., and Eng, L. F., 1986, Turnover of glial filaments in mouse spinal cord, J. Neurochem. 47:1749–1753.

    Google Scholar 

  • Dupouey, P., Benjelloun-Touini, S., and Gomes, D., 1985, Histochemical demonstration of an organized cytoarchitecture of the radial glia in the CNS of the embryonic mouse. Dev. Neurosci. 7:81–93.

    Google Scholar 

  • Eng, L. F., and De Armond, S. J., 1982, Immunocytochemical studies of astrocytes in normal development and disease. Adv. Cell Neurobiol. 3:145–171.

    Google Scholar 

  • Eng, L. F., Gerstl, B., and Vanderhaeghen, J. J., 1970, A study of proteins in old multiple sclerosis plaques, Trans. Amer. Soc. Neurochem. 1:42.

    Google Scholar 

  • Eng, L. F., Reier, P. J., and Houle, J. D., 1987, Astrocyte activation and fibrous gliosis glial fibrillary acidic protein immunostaining of astrocytes following intraspinal cord grafting of fetal CNS tissue, in: “Progress in brain research”, F. J. Seil, E. Herbert, B. M. Carlson, eds, Elsevier Science Publishers B. V., Biomedical Division, Amsterdam, Vol. 71, pp 439–455.

    Google Scholar 

  • Eng, L. F., Vanderhaegen, J. J., Bignami, A., and Gerstl, B., 1971, An acidic protein isolated from fibrous astrocytes, Brain Res. 28: 351–354.

    Google Scholar 

  • Faucon-Biguet, N., Buda, M., Lamouroux, A., Samolyk, D., and Mallet, J., 1986, Time course of the changes of TH mRNA in rat brain and adrenal medulla after a single injection of reserpine, EMBO J. 5: 287–291.

    Google Scholar 

  • Fedoroff, S., 1986, Prenatal ontogenesis of astrocytes, in: “Astrocytes”, S. Fedoroff, and Vernadakis eds

    Google Scholar 

  • Academic Press, Orlando, San Diego, New York, Austin, Boston, London, Sydney, Tokyo, Toronto, Vol. 1, pp 3567.

    Google Scholar 

  • Fedoroff, S., Neal, J., Opas, M., and Kalnius, V. I., 1984, Astrocyte cell lineage. III The morphology of differentiating mouse astrocytes in colony culture, J. Neurocvtol. 13: 1–20.

    Article  Google Scholar 

  • Fulcrand, J., and Privat, A., 1977, Neuroglial reactions secondary to Wallerian degeneration in the optic nerve of the postnatal rat Ultrastructural and quantitative study. J. Comp. Neurol. 176, 189–221.

    Google Scholar 

  • Geisler, N., and Weber, K., 1981, Comparison of the proteins of two immunologically distinct intermediate-sized filaments by amino acid sequence analysis. Desmin and vimentin, Proc. Natl. Acad. Sci. USA 78:4120–4123.

    Google Scholar 

  • Geisler, N., and Weber, K., 1982, The amino acid sequence of chicken muscle desmin provides a common structural model for intermediate filament proteins, EMBO J., 1: 1649–1656.

    Google Scholar 

  • Goldman, J. E., Schaumburg, H. H., and Norton, W. T., 1978, Isolation and characterization of glial filaments from human brain, J. Cell. Biol. 78:426–440.

    Google Scholar 

  • Hain, R. F., Rieke, W. O., and Everett, N. B., 1960, Evidence of mitosis in neuroglia as revealed by radioautography employing tritiated thymidine, J. Neuropathol. Exp. Neurol. 19:147–148.

    Google Scholar 

  • Hanahan, D., and Meselson, M., 1980, Plasmid screening at high colony density, Gene 10: 63–67.

    Google Scholar 

  • Isacson, O., Fischer, W., Wictorin, K., Dawbarn, D., and Björklund, A., 1987, Astroglial response in the excitotoxically lesioned neostriatum and its projection areas in the rat, Neuroscience 20: 1043–1056.

    Google Scholar 

  • Kitamura, T., Nakanishi, K., Watanabe, S., Endo, Y., and Fujita, S., 1987, GFA-protein gene expression on the astroglia in cow and rat brains, Brain Res. 423: 189–195.

    Google Scholar 

  • Kubota, Y., Inagaki, S., Kito, S., Takagi, H., and Smith, A. D., 1986, Ultrastructural evidence of dopaminergic input to enkephalinergic neurons in rat neostriatum, Brain Res. 367: 374–378.

    Google Scholar 

  • Latov, N., Nilaver, G., Zimmerman, E. A., Johnson, W. G., Silverman, A. J., Defendini, R., and Cote, L., 1979, Fibrillary astrocytes proliferate in response to brain injury: A study combining immunoperoxidase technique for glial fibrillary acidic protein and radioautography of tritiated thymidine, Develop. Biol. 72:381–384.

    Google Scholar 

  • Lazarides, E., 1980, Intermediate filaments as mechanical integrators of cellular space, Nature (London) 283:249–256.

    Google Scholar 

  • Lewis, S. A., Balcarek, J. M., Krek, V., Shelanski, M., and Cowan, N. J., 1984, Sequence of a cDNA clone encoding mouse glial fibrillary acidic protein: Structural conservation of intermediate filaments, Proc. Natl. Acad. Sci. USA. 81:2743–2746.

    Google Scholar 

  • Lomedico, P. T., and Saunders, G. F., 1976, Preparation of pancreatic mRNAS cell-free translation of an insulinimmunoreactive peptide, Nucleic Acids Res. 2: 381–391.

    Google Scholar 

  • Malloch, G. D. A., Clark, J. B., and Burnet, F. R., 1987, Glial fibrillary acidic protein in the cytoskeletal and soluble protein fractions of the developing rat brain, J. Neurochem. 48:299–306.

    Google Scholar 

  • Marshall, J. F., 1985, Neural plasticity and recovery of function after brain injury, in: “International review of neurobiology, J. R. Smythies, R. J. Bradey, eds, Academic Press, London, Vol. 26, pp 201–247.

    Google Scholar 

  • Nathaniel, E.J.H., and Nathaniel DR, 1981, The reactive astrocyte, in: “Advances in Cellular Neurobiology”, S. Federoff and L. Hertz, eds, Academic Press, New York, Vol. 2, pp 249–301.

    Google Scholar 

  • Newcombe, J., Glynn, P., and Cuzner, M. L., 1982, The immunological identification of brain proteins on cellulose nitrate in human demyelinating disease, J. Neurochem. 38: 267–274.

    Article  Google Scholar 

  • Patel, A. J., Weir, M. D., Hunt, A., Tahourdin, C. S. M., and Thomas, D. G. T., 1985, Distribution of glutamine synthetase and glial fibrillary acidic protein and correlation of glutamine synthetase with glutamate decarboxylase in different regions of the rat central nervous system, Brain Res. 331: 1–9.

    Google Scholar 

  • Paxinos, G., and Watson, C., 1982, “The rat brain in stereotaxic coordinates”, Academic Press, Sydney.

    Google Scholar 

  • Pelham, H. R. B., and Jackson, R. J., 1976, An efficient mRNA-dependent translation system from reticulocyte lysates, Eur. J. Biochem. 67:247–256.

    Google Scholar 

  • Quax-Jeuken, Y. E. F. M., Quax, W. J., and Bloemendal, H., 1983, Primary and secondary structure of hamster vimentin predicted from the nucleotide sequence, Proc. Natl. Acad. Sci. USA 80:3548–3552.

    Google Scholar 

  • Rataboul, P., Faucon-Biguet, N., Vernier, P., De Vitry, F., Boularand, S., Privat, A., and Mallet, J., 1988, Identification of a human GFAP cDNA: A tool for the molecular analysis of reactive gliosis in the mammalian CNS, J. Neurosci. Res. 20:165–175.

    Google Scholar 

  • Rigby, P. W. J., Dieckmann, M., Rhodes, C., and Berg, P., 1977, Labelling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I, J. Mol. Biol. 113:237–251.

    Google Scholar 

  • Schlaepfer, W. W., and Zimmerman, V. J. P., 1981, Calcium mediated breakdown of glial filaments and neurofilaments in rat optic nerve and spinal cord, Neurochem. Res. 6:243–255.

    Google Scholar 

  • Sivam, S. P., Strunck, C., Smith, D. R., and Hong, J. S., 1986, Proenkephalin-A gene regulation in the rat striatum: influence of lithium and haloperidol. Mol. Pharmacol. 30:186–191.

    Google Scholar 

  • Smith, M. E., Perret, V., and Eng, L. F., 1984, Metabolic studies in vitro the CNS cytoskeletal proteins. synthesis and degradation, Neurochem. Res., 9: 1493–1507.

    Google Scholar 

  • Steinert, P. M., Steven, A. C., and Roop, D. R., 1985, The molecular biology of intermediate filaments, Cell 42: 411–419.

    Google Scholar 

  • Sternberger, I. A., 1979, “Immunocytochemistry”, 2nd ed., J. Wiley, ed., New-York, pp 104–170.

    Google Scholar 

  • Strömberg, I., Björklund, H., Dahl, D., Jonsson, G., Sundström, E., and Olson, L., 1986, Astrocyte

    Google Scholar 

  • responses to dopaminergic denervations by 6hydroxydopamine and 1-methyl - 4 - phenyl - 1,2,3,6 - tetrahydropyridine as evidenced by glial fribrillary acidic protein immunohistochemistry, Brain Res. Bull. 17(2):225–236.

    Google Scholar 

  • Tang, F., Costa, E., and Schwartz, J. P., 1983, Increase of proenkephalin mRNA and enkephalin content of rat striatum after daily injection of haloperidol for 2 to 3 weeks, Proc. Natl. Acad. Sci. USA 80:3841–3844.

    Google Scholar 

  • Vernier, P., Julien, J. F., Rataboul, P., Fourrier, O., Feuerstein, C., and Mallet, J., 1988, Similar time course changes in striatal levels of glutamic acid decarboxylase and proenkephaline mRNA following dopaminergic deafferentiation in the rat, J. Neurochem. 51: 1375–1380.

    Article  Google Scholar 

  • Weir, M. D., Patel, A. J., Hunt, A., and Thomas, D. G. T., 1984, Developmental changes in the amount of glial fibrillary acidic protein in three regions of the rat brain, Dev. Brain Res. 15:147–154.

    Google Scholar 

  • Yoshikawa, K., Williams, C., and Sabol, S.L., 1984, Rat brain preproenkephalin mRNA: cDNA cloning, primary structure, and distribution in the central nervous system, J. Biol. Chem. 259:14301–14308.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rataboul, P., Vernier, P., Privat, A. (1990). Analysis of Glial Scarring in the Mammalian CNS with a GFAP cDNA Probe. In: Lauder, J.M., Privat, A., Giacobini, E., Timiras, P.S., Vernadakis, A. (eds) Molecular Aspects of Development and Aging of the Nervous System. Advances in Experimental Medicine and Biology, vol 265. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5876-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5876-4_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-5878-8

  • Online ISBN: 978-1-4757-5876-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics