Skip to main content

Push-Pull Model of Dopamine’s Action in the Retina

  • Chapter
Models of the Visual System

Abstract

Although our knowledge of the interactive connections in the mammalian retina has greatly expanded over the last 20 years, the exact wiring and functional role of this complex network has not yet been elucidated. Ganglion cells receive input from the vertical pathways (photoreceptors — bipolar cells — ganglion cells) and lateral pathways (photoreceptors — horizontal cells — bipolar cells — amacrine cells) of retinal interneurons (Werblin and Dowling, 1969). Contrary to the ganglion cell responses which can be recorded from the optic nerve, the three classes of retinal interneurons (horizontal, amacrine and bipolar cells) are not easily accessible and recordings are further limited by their small size, especially in higher vertebrates. Together with photoreceptors and the ganglion cells, they make up the complex network of the mammalian retina. Ganglion cells have a characteristic center-surround antagonistic organization in their receptive fields (Kuffler, 1953; Rodieck and Stone, 1966; Enroth-Cugell and Robson, 1966) (Fig. 5.1). It has been shown, however, that bipolar neurons of the primate, which precede ganglion cells in the vertical pathway, also have surrounds (Dacey et al, 2000).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barlow, H.B., and Hill, R.M., 1963, Selective sensitivity to direction of movement in ganglion cells of the rabbit retina, Science. 139: 412–414.

    Article  Google Scholar 

  • Baylor, D.A., Fuortes, M.G.F., and O’Bryan, P.M., 1971, Receptive fields of the cones in the retina of the turtle, J. Physiol. (Lond.) 214: 265–294.

    Google Scholar 

  • Bodis-Wollner, I., 1972, Visual acuity and contrast sensitivity in patients with cerebral lesions, Science. 178: 769–771.

    Article  Google Scholar 

  • Bodis-Wollner, I., and Camisa, J.M., 1980, Conrast sensitivity in clinical diagnosis, in: Neuro-opthalmology, Lessell, S., Van Dalen, J.T.W., eds., Elsevier Science, Amsterdam, pp. 373–401.

    Google Scholar 

  • Bodis-Wollner, I., Marx, M., and Ghilardi, M.F., 1989, Systematic Haloperidol administration increases the amplitude of the light and dark adapted flash ERG in the monkey, Clin. Vis. Sci. 4: 19–26.

    Google Scholar 

  • Bodis-Wollner, I., 1990, Visual deficits related to dopamine deficiency in experimental animals and Parkinson’s disease patients. Trends Neurosci. 13: 296–302.

    Article  Google Scholar 

  • Bodis-Wollner, I., Tagliati, M., Peppe, A., and Antal, A., 1993, Visual and visual perceptual disorders in neurodegenerative diseases, Bailliere’s Clinical Neurology. 2: 461–490.

    Google Scholar 

  • Midis Wollner, I., 1996, Electrophysiological assessment of retinal dopaminergic deficiency, Fund. Neurosci. 46: 35–41.

    Google Scholar 

  • Bodis -Wollner, I., and Tzelepi, A., 1998, The push-pull action of dopamine on spatial tuning of the monkey retina: the effects of dopaminergic deficiency and selective D1 and D2 receptor ligands on the pattern electroretinogram, Vis. Res. 38: 1479–1487.

    Article  Google Scholar 

  • Boycott, B.B., and Wassle, H., 1974, The morphological types of ganglion cells of the domestic cat’s retina, J. Physiol. (Lond.) 240: 397–419.

    Google Scholar 

  • Boycott, B.B., and Wassle, H., 1991, Morphological classification of bipolar cells of the primate retina, Eur. J. Neurosci. 3: 1069–1088.

    Article  Google Scholar 

  • Burns, R.S., Chiuech, C.C., Markey, S., Ebert, M.H., Jacobowitz, D.M., and Kopin, J., 1983, A primate model of Parkinson’s disease: selective destruction of substantia nigra pars compacta dopaminergic neurons by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, Proc. Natl. Acad. Sci. USA 80: 4546–4550.

    Article  Google Scholar 

  • Cleland, B.G., and Levick, W.R., 1974, Properties of rarely encountered types of ganglion cells in the cat’s retina, J. Physiot(Lond.) 240: 457–492.

    Google Scholar 

  • Cohen, J.L., and Dowling, J.E., 1983, The role of the retinal interplexiform cell: effects of 6- hydroxydopamine on the spatial properties of carp horizontal cells, Brain Res. 264: 307–310.

    Article  Google Scholar 

  • Dacey, D., Packer, O., Diller, L., Brainard, D., Peterson, B., and Lee, B., 2000, Center surround receptive field structure of cone bipolar cells in the primate retina, Vis. Res. 40: 1801–1811.

    Article  Google Scholar 

  • Dacey, D.M., 1993, The mosaic of midget ganglion cells in the human retina. J. Neurosci. 13: 5334–5355.

    Google Scholar 

  • Davis, G.C., Williams A.C., Markey, S.P., Ebert, M.H., Caine, E.D., Reichert, C.M., and Kopin I.J., 1979, Chronic parkinsonisms secondary to intravenous injections of meperidine analogues, Psychiatry Res. 1: 249–254.

    Article  Google Scholar 

  • De Monasterio, F.M., and Gouras, P., 1975, Functional properties of ganglion cells of the rhesus monkey retina. J. Physiol. (Lond.) 251: 167–195.

    Google Scholar 

  • Djamgoz, M.B.A., and Kolb, H., 1993, Ultrastructural and functional connectivity of intracellularly stained neurons in the vertebrate retina: correlative analyses, Microsc. Res. Tech. 24: 43–66.

    Article  Google Scholar 

  • Enroth-Cugell, C., and Robson, J.G., 1966, The contrast sensitivity of retinal ganglion cells of the cat, J. Physiol.(Land) 187: 517–552.

    Google Scholar 

  • Fukuda, Y., Hsiao, C.F., Watanabe, M., and Ito, H., 1984, Morphological correlates of physiologically identified Y-, X-, and W-cells in cat retina. J. Neurophysiol. 52: 999–1013.

    Google Scholar 

  • Fukuda, Y., Hsiao, C.F., and Watanabe, M., 1985, Morphological correlates of Y, X and W type ganglion cells in the cat’s retina, Vis. Res. 25: 319–27.

    Article  Google Scholar 

  • Gerschenfeld, H.M., Neyton, J., Piccolino, M., and Witkovsky, P., 1982, L-horizontal cells of the turtle: network organization and coupling modulation, Biomed Res. 3: 21–32.

    Google Scholar 

  • Ghilardi, M.F., Bodis-Wollner, I., Onofrj, M.C., Marx, M.S., and Glover AA., 1988, Spatial frequency-dependent abnormalities of the pattern electroretinogram and visual evoked potentials in a Parkinsonian monkey model, Brain. 11: 131–184.

    Article  Google Scholar 

  • Ghilardi, M.F., Marx, M.X., Bôdis-Wollner, I., Camras, C.B., and Glover, A., 1989, The effect of intraocular 6-hydroxydopamine on retinal processing of primates, Ann. NeuroL 25: 359–364.

    Google Scholar 

  • Grzywacz, N.M., Merwine, D.K., and Amthor, F.R., 1998, Complementary roles of two excitatory pathways in retinal directional selectivity, Vis Neurosci. 15: 1119–1127.

    Google Scholar 

  • Hampson, E.C., Vaney, D.I., and Weiler, R., 1992, Dopaminergic modulation of gap junction permeability between amacrine cells in mammalian retina. J. Neurosci. 12: 4911–4922.

    Google Scholar 

  • Hankins, M.W., and Ikeda, H., 1991, The role of dopaminergic pathways at the outer plexiform layer of the mammalian retina, Clin. Vis. Sci. 6: 87–93.

    Google Scholar 

  • He, S., and Masland, RH., 1997, Retinal direction selectivity after targeted laser ablation of starburst amacrine cells, Nature. 389: 378–382.

    Article  Google Scholar 

  • Jensen, R.J., and Daw, N.W., 1986, Effects of dopamine and its agonists and antagonists on the receptive field properties of ganglion cells in the rabbit retina, Neurosci. 17: 837–855.

    Article  Google Scholar 

  • Kamermans, M., and Spekreijse, H., 1999, The feedback pathway from horizontal cells to cones — A mini review with a look ahead, Vis. Res. 39: 2449–2468.

    Article  Google Scholar 

  • Kaplan, E., and Shapley, R.M., 1986, The primate retina contains two types of ganglion cells with high and low contrast sensitivity, Proc. NatL Acad. Sci. USA 83: 2755–2757.

    Article  Google Scholar 

  • Kolb, H., Nelson, R., and Mariani A., 1981, Amacrine cells, bipolar cells and ganglion cells of the cat retina: a Golgi study, Vis. Res. 21: 1081–1114.

    Article  Google Scholar 

  • Kolb, H., Linberg, K.A., and Fisher, S.K., 1992, Neurons of the human retina: A Golgi study, J. Comp. Neurol. 31: 147–187.

    Article  Google Scholar 

  • Kuffler, S.W., 1953, Discharge patterns and functional organization of mammalian retina, Neurophysiol. 16: 37–68.

    Google Scholar 

  • Lasater, E.M., and Dowling, J.E., 1985, Dopamine decreases conductance of the electrical junctions between cultured retinal horizontal cells, Proc. Natl. Acad. Sci. USA 82: 3025–3029.

    Article  Google Scholar 

  • Maffei, L., and Fiorentini, A., 1981, Electroretinographic responses to alternating gratings before and after section of the optic nerve, Science. 211: 953–955.

    Article  Google Scholar 

  • Maffei, L., Fiorentini, A., Bisti, S., and Hollander, H., 1985, Pattern ERG in the monkey after section of the optic nerve, Exp. Brain. Res. 59: 423–425.

    Google Scholar 

  • Maguire, G.W., and Hamasaki, D.I., 1994, The retinal dopamine network alters the adaptational properties of retinal ganglion cells in the cat, J. Neurophysiol. 72: 730–741.

    Google Scholar 

  • Maguire, G.W., and Smith, E.L.III., 1985, Cat retinal ganglion cell receptive-field alterations after 6-hydroxydopamine induced doparninergic amacrine cell lesions, J. NeurosphysioL 53: 1431–43.

    Google Scholar 

  • Mangel, S.C., and Dowling, J.E., 1985, Responsiveness and receptive field size of carp horizontal cells are reduced by prolonged darkness and dopamine, Science. 229: 1107–1109.

    Article  Google Scholar 

  • Mariani, A.P., 1990 Amacrine cells of the rhesus monkey retina, J. Comp. Neural. 301: 382–400.

    Article  Google Scholar 

  • Marx, A.Ö.Q, Wang, R.F., and Severin, C., 1988. Signs of early damage in glaucomatous monkey eyes: low spatial frequency losses in the pattern ERG and VEP, Exp Eye Res 46: 173–184.

    Article  Google Scholar 

  • Matsumoto, N., and Nalca, K.I., 1972, Identification of intracellular responses in the frog retina, Brain Res. 42: 59–71.

    Article  Google Scholar 

  • Nguyen-Legros, J., Versaux-Botteri, C., and Vernier, P., 1999, Doparnine receptor localization in the mammalian retina, Mol. Neurobiol. 19: 181–204.

    Article  Google Scholar 

  • Ninldas.YK. Youngster, S., Liodt, M.V, 1887. Molecular mechanisms of MPTP induced toxicity.LV. MPTP, MPP+ and mitochondrial function, Life Sci, 40: 72l-729.

    Google Scholar 

  • Oliver, P., Jolicoeur, F.B., Lafond, B., Drumheller AI. and Brunette, IR, 1986, Dose related effects of 6-OHDA on rabbit retinal dopaniìne concentrations and ERG b-wave amplitudes, Brain Res. Bull. 16: 751–753.

    Article  Google Scholar 

  • Pppe.A, Aoual, A, Togliuti, M, 1990. DmêonistCY 208–243 attenuates the pattern electroretinogram to low spatial frequency stimuli in the monkey, Neurosci Lett. 242: 1–4.

    Google Scholar 

  • Picuuöun.Y, DcKÖondo.G, Yitkovoky, P, Südo-Wollnnr, I., 1987. Dl and D2 dopamine receptors involved in the control of electrical transmission between retinal horizontal cells, in: Symposia in Neuroscience: Central and Peripheral DopumivxngicBooepumrs,. Liviana Press Padova, pp. 1–12.

    Google Scholar 

  • Uon, Y., Witkmky, P., and Trimarchi C., 1987, Dopaminergic mechanisms underlying the reduction of electrical coupling between horizontal cells of the turtle retina induced by d’amphetuobno, biovcünc, and verutridino.Jevni 7: 2273–2284.

    Google Scholar 

  • Regan, D..Kvthu, C. and Sharpe, A.. 1991, Recognition of motion-defined shapes in patients with multiple sclerosis and optic neuritis. Brain. 114: 1129–1155.

    Google Scholar 

  • Rodieck, R.W., and Stone, J., 1965, Analysis of receptive fields of cat retinal ganglion cells, J. Neurophysiol. 28: 833–849.

    Google Scholar 

  • Qodinuk.R.YV,8ioomodur.K.P, and Dineen, J, 1985, Parasol and midget ganglion cells of the human retina, Comp. Nepnol 33: 5-132.

    Google Scholar 

  • Schwartz, E.A., 1974, Response of bipolar cells in the retina of the turtle. Physiol.(Lond) 236: 211–224.

    Google Scholar 

  • Shapley, R., and Perry V.H., 1986, Ca and monkey retinal ganglion cells and their visual functional roles, Trends Neurosci. 9: 229–235.

    Article  Google Scholar 

  • Tugimb.M, and Suanzionc.P. 1994, Spatial frequency tuning in the monkey retina depends on D2 receptor-linked action of doparnine, Vis. Res. 34: 2051–2057.

    Article  Google Scholar 

  • Tniab.M, Yubr, Y.D, 1996. The pattern electroretinogram in Parkinson’s disease reveals lack of retinal spatial tuning, Electroenceph. Clinic. Neurophysiol. 100: 1–11.

    Article  Google Scholar 

  • Teranishi, T., Negishi, K., and Kato, S., 1983, Dopamine modulates S-potential amplitude and dye-coupling between external horizontal cells in carp retina, Nature. 301: 243–246.

    Article  Google Scholar 

  • Teranishi, T., Negishi, K., and Kato, S., 1984, Regulatory effect of dopamine on spatial properties of horizontal cells in carp retina, J. Neurosci. 4: 1271–1280.

    Google Scholar 

  • Ungerstedt, U., and Arbuthnott, G.W., 1970, Quantitative recording of rotational behavior in rats uftohydmxydopuodno lesions of the nigrostriatal dopamine system, Brain Res. 24: 485–493.

    Article  Google Scholar 

  • Vaney, D.I., 1994, Patterns of neuronal coupling in the retina, Prog. Ret. Eye Res. 13: 301–355.

    Article  Google Scholar 

  • Vaney, D.I., 1990, The mosaic of amacrine cells in the mammalian retina, Prog. Ret. Res. 9: 49–100.

    Article  Google Scholar 

  • Vardi, N., and Smith, R.G., 1996, The All amacrine network: coupling can increase correlated activity, Vis. Res. 36: 3743–3757.

    Article  Google Scholar 

  • Werblin, F.S., and Dowling, J.E., 1969, Organization of the retina of the mudpuppy, Necturus maculosus II. Intracellular recording, J. Neurophysiol. 32: 339–355.

    Google Scholar 

  • Witkovsky, P., Alones, V., and Piccolino, M., 1987, Morphological changes induced in turtle retinal neurons by exposure to to 6-hydroxydopamine and 5,6-hycoxytryptamine, J. Neurocytol. 16: 55–67.

    Article  Google Scholar 

  • Wong, C., Ishibashi, T., Tucker, G., and Hamasaki, D., 1984, Responses of the pigmented rabbit retina to NMPTP, a chemical inducer of Parkinsonism, Exp. Eye Res. 40: 509–519.

    Article  Google Scholar 

  • Xin, D., and Bloomfield, S.A., 1999, Dark-and light-induced changes in coupling between horizontal cells in mammalian retina, J. Comp. Neurol. 405: 75–87.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bódis-Wollner, I., Tzelepi, A. (2002). Push-Pull Model of Dopamine’s Action in the Retina. In: Hung, G.K., Ciuffreda, K.J. (eds) Models of the Visual System. Topics in Biomedical Engineering International Book Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5865-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5865-8_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3377-5

  • Online ISBN: 978-1-4757-5865-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics