Skip to main content

Intraocular Retinal Prostheses and Related Signal Processing

  • Chapter
Models of the Visual System

Abstract

For millennia, restoring sight to the blind has been viewed as being nothing less than miraculous. It has only been in the last few years that the fields of electronic microfabrication, neurophysiology, and retinal surgery have advanced to the point where an implantable visual prosthesis system, based on electrical stimulation, is considered feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agnew, W. F. and McCreery, D. B. (eds), 1990, Neural Prosthesis,Prentice-Hall, New York.

    Google Scholar 

  • Bak, M., Girvin, J. P., Hambrecht, F. T., et al., 1990, Visual sensations produced by intracortical microstimulation of the human occipital cortex, Med. Biol. Eng. Comput. 28: 257–259.

    Article  Google Scholar 

  • Beaudot, W., 1996, Adaptive spatiotemporal filtering by a neuromorphic model of the vertebrate retina, Proc. IEEE Int. Conf. Image, Vol. 1, pp. 427–430.

    Article  Google Scholar 

  • Beebe, X. and Rose, T. L., 1988, Charge injection limits of activated iridium oxide electrodes with 0.2 ms pulses in bicarbonate buffered saline, IEEE Trans. Biomed. Eng. 135: 494495.

    Google Scholar 

  • BeMent, S. L., Wise, K. D., Anderson, D. J., et al., 1986, Solid-state electrodes for multichannel multiplexed intracortical neuronal recording, IEEE Trans. Biomed. Eng. 33: 230–241.

    Article  Google Scholar 

  • Bostock, H., 1983, The strength-duration relationship for excitation of myelinated nerve: computed dependence on membrane parameters, J. Physiol. (London). 341: 59–74.

    Google Scholar 

  • Brabyn, J. A., 1982, New developments in mobility and orientation aids for the blind, IEEE Trans. Biomed. Eng. 29: 285–289.

    Article  Google Scholar 

  • Brindley, G. S. and Lewin, W. S., 1968a, The sensations produced by electrical stimulation of the visual cortex, J. Physiol. (London). 196: 479–493.

    Google Scholar 

  • Brindley, G. S. and Lewin, W. S., 1968b, The visual sensations produced by electrical stimulation of the medial occipital cortex, J Physiol. (London). 194: 54–55 P.

    Google Scholar 

  • Brindley, G. S., 1965, The number of information channels needed for efficient reading, J. Physiol. 177: 44 P.

    Google Scholar 

  • Brown, W. J., Babb, T. L., Soper, H.V., et al., 1977, Tissue reactions to long-term electrical stimulation of the cerebellum in monkeys, J. Neurosurg. 47: 366–379.

    Article  Google Scholar 

  • Brummer, S. B. and Turner, M. J., 1975, Electrical stimulation of the nervous system: The principle of safe charge injection with noble metal electrodes, Bioelectrochem. Bioenerg. 2: 13–25.

    Article  Google Scholar 

  • Bullara, L. A., McCreery, D. B., Yuen, T. G., and Agnew, W. F., 1983, A microelectrode for delivery of defined charge densities, J. Neurosci. Methods. 9: 15–21.

    Article  Google Scholar 

  • Cha, K., Horch, K. W., and Norrnann, R. A., 1992a, Mobility performance with a pixelized vision system, Vision Res. 32: 1367–1372.

    Article  Google Scholar 

  • Cha, K., Horch, K. W., Norman, R. A., Boman, D. K., 1992b, Reading speed with a pixelized vision system, J. Opt. Soc. Am. 9: 673–677.

    Article  Google Scholar 

  • Cha, K., Horch, K., Norman, R. A., 1992c, Simulation of a phosphene-based visual field: visual acuity in a pixelized vision system, Ann. Biomed. Eng. 20: 439–449.

    Article  Google Scholar 

  • Chen, S. J., Humayun, M. S, Weiland, J. D., et al., 2000, Electrical stimulation of the mouse retina: A study of electrically elicited visual cortical responses, Invest. Ophthal. Vis. Sci. 40: S889.

    Google Scholar 

  • Chow, A. Y. and Chow, V. Y., 19997, Subretinal electrical stimulation of the rabbit retina, Neurosci. Lett. 225: 13–16.

    Google Scholar 

  • Chow, A. Y. and Peachey, N. S., 1998, The subretinal microphotodiode array retinal prosthesis [letter; comment], Ophthalmic Res. 30: 195–198.

    Article  Google Scholar 

  • Cole, J. and Curtis, H., 1939, Electric impedance of the squid giant axon during activity, J. Gen. Physiol. 22: 649–670.

    Article  Google Scholar 

  • Curlander, J. C. and Marmarrelis, V. Z., 1983, Processing of visual information in the distal neurons of the vertebra retina, IEEE, 13: 934–943.

    MATH  Google Scholar 

  • Dacey, D. M., 1996, Circuitry for color coding in the primate retina, Proc. Nat. Acad. Sci., 93: 582–588.

    Article  Google Scholar 

  • de Juan, E., Humayun, M. S., Hatchell, D., and Wilson, D., 1989, Histopathology of experimental retinal neovascularization, Invest. Ophthal. Vis. Sci. 30: 1495.

    Google Scholar 

  • Delbruck, T. and Mead, C.A., 1994, Adaptive photoreceptor with wide dynamic range, Proc. IEEE Int. Symp. on Circuits and Systems, ISCAS ‘84, Vol. 4, pp. 339–342.

    Google Scholar 

  • Djourno, A. and Eyries, C., 1957, Prothese auditive par excitation electrique a distance du nerf sensorial a l’aide d’un bobinage inclus a demeure, Presse Med. 35: 14–17.

    Google Scholar 

  • Dobelle, W. H. and Mladejovsky, M. G., 1974, Phosphenes produced by electrical stimulation of human occipital cortex, and their application to the development of a prosthesis for the blind, J. PhysioL (London). 243: 553–576.

    Google Scholar 

  • Dobelle, W. H., 1994, Artificial vision for the blind. The summit may be closer than you think, ASAIO J. 40: 919–922.

    Google Scholar 

  • Dobelle, W. H., Mladejovsky, M.G, Evans J. R., et al., 1976, “Braille” reading by a blind volunteer by visual cortex stimulation, Nature. 259: 111–112.

    Google Scholar 

  • Dowling, J. E., 1987, The Retina: An Approachable Part of the Brain, Belknap Press, Cambridge.

    Google Scholar 

  • Eckmiller, R., 1997, Learning retina implants with epiretinal contacts, Ophthalmic Res. 29: 281–289.

    Article  Google Scholar 

  • Foerster, O., 1929, Beitrage zur pathophysiologie der sehbahn und der spehsphare, J. Psycho!. Neurol. (Lpz). 39: 435–463.

    Google Scholar 

  • Fritsch, G. and Hitzig J., 1870, Ueber die elecktrische erregbarkeit des grosshims. Arch. Anat. Physiol. 37: 300–332.

    Google Scholar 

  • Galvani L., 1791, De viribus electricitatis in motu musculary, commentarius. De Bononiensi Scientiarum et Artium Institute atque Academia. 7: 363–418.

    Google Scholar 

  • Glenn,W., Mauro, E., Longo, P., et al., 1959, Remote stimulation of the heart by radio frequency transmission, New Eng. J. Med. 261: 948.

    Article  Google Scholar 

  • Gorman, P. H. and Mortimer, J. T., 1983, The effect of stimulus parameters on the recruitment characteristics of direct nerve stimulation, IEEE Trans. Biomed. Eng. 30: 407–414.

    Article  Google Scholar 

  • Greenberg, R. J., 1998, Analysis of Electrical Stimulation of the Vertebrate Retina—Work Towards a Retinal Prosthesis, Ph.D. Dissertation, The Johns Hopkins University, Baltimore, MD.

    Google Scholar 

  • Greenberg, R. J., Velte, T.J., Humayun, M. S., et al., 1999, A computational model of electrical stimulation of the retinal ganglion cell, IEEE Trans. Biomed. Eng. 46: 505–514.

    Article  Google Scholar 

  • Grumet, A. E., Rizzo, J. F., and Wyatt, J. L., 1999, Ten Micron Diameter Electrodes Directly Stimulate Rabbit Retinal Ganglion Cell Axons, Invest. Ophthal. Vis. Sci. 40: S734.

    Google Scholar 

  • Grumet, A. E., Rizzo, J. F., and Wyatt, J., 2000, In-vitro electrical stimulation of human retinal ganglion cell axons, Invest. Ophthal. Vis. Sci. 41: S10.

    Google Scholar 

  • Guenther, E., Trager, B., Schlosshauer, B., and Zrenner, E., 1999, Long-term survival of retinal cell cultures on retinal implant materials, Vision Res. 39: 3988–3994.

    Article  Google Scholar 

  • Heetderks, W. J., 1988, RF powering of millimeter and submillimeter sized neural prosthetic implants, IEEE Trans. Biomed. Eng. 35: 323–326.

    Article  Google Scholar 

  • Heiduschka, P. and Thanos, S., 1998, Implantable bioelectronic interfaces for lost nerve functions, Prog. Neurobiol. 55: 433.

    Article  Google Scholar 

  • Hetke, J. F., Lund, J. L., Najafi, K., et al., 1994, Silicon ribbon cables for chronically implantable microelectrode arrays, IEEE Trans. Biomed. Eng. 41: 314–321.

    Article  Google Scholar 

  • Hodgkin, A. and Huxley, A., 1952a, Currents carried by sodium and potassium ions through the membrane of the giant axon of loligo, J. Physiol. 116: 472–49.

    Google Scholar 

  • Hodgkin, A. and Huxley, A., 1952b, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol. 116: 500–544.

    Google Scholar 

  • Humayun, M., 1994, Is Surface Electrical Stimulation of the Retina a Feasible Approach Towards the Development of a Visual Prosthesis? Ph.D. Dissertation, Johns Hopkins University School of Medicine, Baltimore, MD.

    Google Scholar 

  • Humayun, M., de Juan, E., Jr., Dagnelie,G., Greenberg, R, Propst, R., and Phillips, H., 1996, Visual perception elicited by electrical stimulation of retina in blind humans, Arch. Ophthalmol. 114: 40–46.

    Google Scholar 

  • Humayun, M. S., de Juan, E. J, Weiland, J.D., et al., 1999, Pattern electrical stimulation of the human retina, Vision Res. 39: 2569–2576.

    Article  Google Scholar 

  • Humayun, M. S., de Juan, E. J., Dagnelie, G., et al., 1996, Visual perception elicited by electrical stimulation of retina in blind humans, Arch. Ophthalmol. 114: 40–46.

    Article  Google Scholar 

  • Humayun, M. S., Prince, M., de Juan, E. J., et al., 1999, Morphometric analysis of the extramacular retina from postmortem eyes with retinas pigmentosa, Invest. Ophthal. Vis. Sci. 40: 143–148.

    Google Scholar 

  • Humayun, M. S., Propst, R., de Juan, E. J., et al., 1994, Bipolar surface electrical stimulation of the vertebrate retina, Arch. Ophthalmol. 112: 110–116.

    Article  Google Scholar 

  • Janders, M., Egert, U., Stelze, M., and Nisch, W., 1996, Novel thin-film titanium nitride micro-electrodes with excellent charge transfer capability for cell stimulation and sensing applications, Proc. 19th Int. Conf IEEEJEMBS, pp. 1191–1193.

    Google Scholar 

  • Jones, K. E. and Normann, R. A., 1997, An advanced demultiplexing system for physiological stimulation, IEEE Trans. Biomed. Eng. 44: 1210–1220.

    Article  Google Scholar 

  • Kamy, H., 1975, Clinical and physiological aspects of the cortical visual prosthesis, Surv. Ophthalmol. 20: 47–58.

    Article  Google Scholar 

  • Knighton, R. W., 1975a, An electrically evoked slow potential of the frog’s retina. I. Properties of response, J. Neurophysiol. 38: 185–197.

    Google Scholar 

  • Knighton, R. W., 1975b, An electrically evoked slow potential of the frog’s retina. II. Identification with PII component of electroretinogram, J. Neurophysiol. 38: 198–209.

    Google Scholar 

  • Kolb, H., Fernandez, E., and R. Nelson, Web Visionan internet resource, located at http://webvision.med.utah.edu

    Google Scholar 

  • Kolb, H., Linberg, K. A., and Fisher, S. K., 1992, The neurons of the human retina: a Glogi study, J. Comp. Neurol. 318: 147–187.

    Article  Google Scholar 

  • Kovacs, G. T., Storment, C. W., Rosen, J. M., 1992, Regeneration microelectrode array for peripheral nerve recording and stimulation, IEEE Trans. Blamed. Eng. 39: 893–902.

    Article  Google Scholar 

  • Krause, F. and Schum, H., 1931, Die epiliptischen erkankungen, in: Neue Deutsche Shirurgie, H. Kunter, ed., Stuttgart, Chap. 49a, pp 482–486.

    Google Scholar 

  • Laing, P. G., Ferguson, A. B., Jr., and Hodge, E. S., 1967, Tissue reaction in rabbit muscle exposed to metallic implants, J. Blamed. Mater. Res. 1: 135–149.

    Article  Google Scholar 

  • Lilly, J. C., 1961, Injury and excitation by electric currents: The balanced pulse-pair waveform, in: Electrical Stimulation of the Brain, D. E. Sheer, ed., Hogg Foundation for Mental Health, pp. 60–64.

    Google Scholar 

  • Liu W, Vichienchom K, Clements M, Demarco C, Hughes C, McGucken E, Humayun MS, de Juan E. Jr., Weiland J. D., 2000, A neuro-stimulus chip with telemetry unit for retinal prosthesis device. IEEE Solid-State Circuits. 35: 1487–1497.

    Article  Google Scholar 

  • Majji, A. B, Humayun, M. S, Weiland, J. D., et al., 1999, Long-term histological and electrophysiological results of an inactive epiretinal electrode array implantation in dog, Invest. Ophthal. Vis. Sci. 40: 2073–2081.

    Google Scholar 

  • Margalit„ E., Fujii, G., Lai J, et al., 2000, Bioadhesives for intraocular use, Retina, 20: 469–477.

    Google Scholar 

  • Maynard, E. M., Nordhausen, C. T., and Normann, R. A., 1997, The Utah intra.cortical electrode array: a recording structure for potential brain-computer interfaces, Electroencephalogr. Clin. Neurophysiol. 102: 228–239.

    Article  Google Scholar 

  • McCreery, D. B., Agnew, W. F., Yuen, T. G., and Bullara, L. A., 1988, Comparison of neural damage induced by electrical stimulation with faradaic and capacitor electrodes, Ann. Biomed. Eng. 16: 463–481.

    Article  Google Scholar 

  • McCreery, D. B., Agnew, W. F., Yuen, T. G.H., and Bullara, L., 1990, Charge density and charge per phase as cofactors in neural injury induced by electrical stimulation, IEEE Trans. Biomed. Eng. 37: 996–1001.

    Article  Google Scholar 

  • McHardy, J., Robblee, L. S., Marston, J. M., and Brummer, S. B., 1980, Electrical stimulation with pt electrodes. IV. Factors influencing Pt dissolution in inorganic saline, Biomater. 1: 129–134.

    Article  Google Scholar 

  • Nordhausen, C. T., Maynard, E. M., and Nomiatm, R. A.., 1996, Single unit recording capabilities of a 100 microelectrode array, Brain Res. 726: 129–140.

    Article  Google Scholar 

  • Nomiann, R. A., 1999, MERPWD. A neural interface for a cortical vision prothesis, Vision Res. 39: 2577–2587.

    Article  Google Scholar 

  • Osterberg, G. (1935) Topography of the layer of rods and cones in the human retina, Acta Ophthal. supp. 6: 1–103.

    Google Scholar 

  • Ogden, T.E. (1989) Retina: Basic Science and Inherited Retinal Disease, Vol I. The CV Mosby Co., St. Louis.

    Google Scholar 

  • Penfield, W. and Jasper, H., 1954, Epilepsy and the Functional Anatomy of the Human Brain, Churchill, London.

    Google Scholar 

  • Penfield, W. and Rasussen, T., 1952, The Cerebral Cortex of Man, Macmillan, New York, pp. 135–147.

    Google Scholar 

  • Peyman, G., Chow, A. Y, Liang, C., et al., 1998, Subretinal semiconductor microphotodiode array, Ophthalmic Surg. Lasers. 29: 234–241.

    Google Scholar 

  • Pollen, D. A., 1977, Responses of single neurons to electrical stimulation of the surface of the visual cortex, Brain Behay. Evol. 14: 67–86.

    Article  Google Scholar 

  • Polyak, S.L. (1941) The Retina. University of Chicago Press, Chicago.

    Google Scholar 

  • Potts, A. M. and Inoue J., 1970, The electrically evoked response of the visual system (EER) III. Further consideration to the origin of the EER, Invest. Ophthal Vis. Sci.. 9: 814–819.

    Google Scholar 

  • Potts, A. M. and Inoue, J., 1969, The electrically evoked response (EER) of the visual system II. Effect of adaptation and retinitis pigmentosa, Invest. Ophthal. Vis. Sci. 8: 605–612.

    Google Scholar 

  • Potts, A. M., Inoue, J., and Buffum, D., 1968, The electrically evoked response of the visual system (EER), Invest. Ophthal. Vis. Sci. 7: 269–278.

    Google Scholar 

  • Pudenz, R. H., Bullara, L. A., Dru, D., and Talalla, A., 1975a, Electrical stimulation of the brain. II. Effects on the blood-brain barrier, Surg. Neural. 4: 265–270.

    Google Scholar 

  • Pudenz, R. H., Bullara, L. A., Jacques, S., and Hambrecht, F. T., 1975b, Electrical stimulation of the brain. III. The neural damage model, Surg. Neural. 4: 389–400.

    Google Scholar 

  • Pudenz, R.H., Bullara, L.A., and Talalla, A., 1975c, Electrical stimulation of the brain. I. Electrodes and electrode arrays, Surg. Neurol. 4: 37–42.

    Google Scholar 

  • Rita, P., Kaczmarek, K A, Tyler, M. E., and Garcia-Lara, J., 1998, Form perception with a 49- point electrotactile stimulus array on the tongue: a technical note, J. Rehabil. Res. Dev. 35: 427–430.

    Google Scholar 

  • Rizzo, J. and Wyatt, J., 1997, Prospects for a visual prosthesis, Neuroscientist, 3: 251–262.

    Article  Google Scholar 

  • Rizzo, J., Wyatt, J., Loewenstein, J., and Kelly, S., 2000, Acute intraocular retinal stimulation in normal and blind humans, Invest. Ophthal. Vis. Sci. 41: S102.

    Google Scholar 

  • Robblee, L. S., Mangaudis, M., Lasinski, E., et al., 1986, Charge injection properties of thermally-prepared iridium oxide films, Mat. Res. Soc. Symp. Proc. 55: 303–310.

    Article  Google Scholar 

  • Santos, A., Humayun, M. S., de Juan, E. J., et al., 1997, Preservation of the inner retina in retinitis pigmentosa. A morphometric analysis, Arch. Ophthalmol. 115: 511–515.

    Article  Google Scholar 

  • Sato, S., Sugimoto, S., and Chiba, S., 1982, A procedure for recording electroretinogram and visual evoked potential in conscious dog, J. Pharmacol. Methods. 8: 173–181.

    Article  Google Scholar 

  • Schmidt, E. M, Bak, M. J, Hambrecht, F. T, et al., 1996, Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex, Brain. 119 (Pt 2): 507–522.

    Article  Google Scholar 

  • Schmidt, E. M, Bak, M. J., and Christensen, P., 1995, Laser exposure of Parylene-C insulated microelectrodes, J. Neurosci. Methods 62: 89–92.

    Article  Google Scholar 

  • Schwarz, M. et al., 1999, Single-chip CMOS image sensors for a retina implant system, IEEE Trans. Circuits Syst.-II: Analog Dig. Signal Proc. 46: 870–877.

    Article  Google Scholar 

  • Scribner, D. A., Kruer, M. R., and Killiany, J. M., 1991, Infrared focal plane array technology, Proc. IEEE. 79: 65–85.

    Google Scholar 

  • Shapley, R. and Enroth-Cugell, C., 1984, Visual adaptation and retina gain controls, in Progress in Retinal Research, Vol. 3, N. N. Osborne and G. J. Chader, eds., Pergamon, New York.

    Google Scholar 

  • Shyu, J., Maia, M., Weiland, J., et al., 2000, Electrical Stimulation of Isolated Rabbit Retina, Biomedical Engineering Society Annual Meeting, Seattle, WA. 28: S115.

    Google Scholar 

  • Sterling, T. D. and Vaughn, H. G., Jr., 1971, Feasibility of electrocortical prosthesis, in: Visual Prosthesis: The Interdisciplinary Dialogue, T.D. Sterling et al., ed., Academic Press, New York.

    Google Scholar 

  • Stone, J. L., Barlow, W. E., Humayun, M. S., et al., 1992, Morphometric analysis of macular photoreceptors and ganglion cells in retinas with retinitis pigmentosa, Arch. Ophthalmol. 110: 1634–1639.

    Article  Google Scholar 

  • Suzuki, S., Humayun, M., de Juan, E., et al., 1999, A comparison of electrical stimulation threshold in normal mouse retina vs. different aged retinal degenerate (rd) mouse retina, Invest. Ophthal. Vis. Sci. 40: S735.

    Google Scholar 

  • Teeters, J., Jacobs, A., and Werblin, F., 1997, How neural interactions form neural responses in the Salamander retina, J. Comp. Neurosci. 4: 5.

    Article  Google Scholar 

  • Tehovnik, E., 1996, Electrical stimulation of neural tissue to evoke behavioral responses, J. Neurosci. Methods. 65: 1–17.

    Article  Google Scholar 

  • Thompson, R, Barnett, D., Humayun, M., and Dagnelie, G., 2000, Reading speed and facial recognition using simulated prosthetic vision, Invest. Ophthal. Vis. Sci. 41: S860.

    Google Scholar 

  • Tonucci, R.J. and Justus, B.L., 1993a, Nanocchannel Glass Matrix Used in Making Mesoscopic Structures, U.S. Patent 5,264,722, issued November 1993.

    Google Scholar 

  • Tonucci, R.J. and Justus, B.L., 1993b, Nanochannel Filter, U.S. Patent 5,234,594, issued August 1993.

    Google Scholar 

  • Tonucci, R. J., Justus, B. L., Campillo, A. J., and Ford, C. E., 1992, Nanochannel array glass, Science. 258: 783–785.

    Article  Google Scholar 

  • Toyoda, J. and Fujimoto, M., 1984, Application of transretinal current stimulation for the study of bipolar-amacrine transmission, J. Gen. Physiol. 84: 915–925.

    Article  Google Scholar 

  • Troyk, P. and Schwan, M., 1992, Closed-loop class E transcutaneous power and data link for microimplants, IEEE Trans. Biomed. Eng. 39: 589–599.

    Article  Google Scholar 

  • Turner, J. N., Shain, W., Szarowski, D. H., et al., 1999, Cerebral astrocyte response to micromachined silicon implants, Exp. Neural. 156: 33–49.

    Article  Google Scholar 

  • Veraart, C., Raftopoulos, C., Mortimer, J. T., et al., 1998, Visual sensations produced by optic nerve stimulation using an implanted self-sizing spiral cuff electrode, Brain Res. 813: 181–186.

    Article  Google Scholar 

  • Weiland, J. D. and Anderson, D. J., 2000, Chronic neural stimulation with thin-film, iridium oxide stimulating electrodes, IEEE Trans. Biomed. Eng. 47: 911–918.

    Article  Google Scholar 

  • Weiland, J. D., Humayun, M. S., Dagnelie, G., et al., 1999, Understanding the origin of visual percepts elicited by electrical stimulation of the human retina, Graefes Arch. Clin. Exp. Ophthalmol. 237: 1007–1013.

    Article  Google Scholar 

  • West, D. C. and, Wolstencroft, J. H., 1983, Strength-duration characteristics of myelinated and non-myelinated bulbospinal axons in the cat spinal cord, J. Physiol. (London). 337: 37–50.

    Google Scholar 

  • Wiley, J. D. and Webster, J. G., 1982, Analysis and control of the current distribution under circular dispersive electrodes, IEEE Trans. Biomed. Eng. 29: 381–385.

    Article  Google Scholar 

  • Wise, K. D., Angell, J., and Starr, A., 1970, An integrated-circuit approach to extracellular microelectrodes, IEEE Trans. Biomed. Eng. 17: 238–247.

    Article  Google Scholar 

  • Wyatt, J. and Rizzo, J. F., 1996, Ocular implants for the blind, IEEE Spectrum. 112: 47–53.

    Article  Google Scholar 

  • Yagi, T. and Hayashida, Y., 1999, Implantation of the artificial retina, Nippon Rinsho. 57: 1208–1215.

    Google Scholar 

  • Yagi, T. and Watanabe, M. A., 1998, A computational study on an electrode array in a hybrid retinal implant, Proc. of 1998 IEEE Int. Joint Conf on Neural Networks, pp. 780–783.

    Google Scholar 

  • Zrenner, E., Stett, A., Weiss, S., et al., 1999, Can subretinal microphotodiodes successfully replace degenerated photoreceptors? Vis. Res. 39: 2555–2567.

    Article  Google Scholar 

  • Zuidema, P., Koenderink, J. J., and Bouman, M. A., 1983, A mechanistic approach to threshold behavior of the visual system, IEEE Trans. Syst. Man Cybernet. 13: 923.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Scribner, D., Margalit, E., Eong, KG.A., Weiland, J., de Juan, E., Humayun, M.S. (2002). Intraocular Retinal Prostheses and Related Signal Processing. In: Hung, G.K., Ciuffreda, K.J. (eds) Models of the Visual System. Topics in Biomedical Engineering International Book Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5865-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5865-8_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3377-5

  • Online ISBN: 978-1-4757-5865-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics