Skip to main content

Neural Mechanisms for the Production of the Lobster Pyloric Motor Pattern

  • Chapter
Model Neural Networks and Behavior

Abstract

In order to understand and explain the biological mechanisms underlying an animal’s behavior, we must investigate the structure and physiology of its nervous system. One form of behavior that is particularly amenable to physiological analysis is the class of rhythmic behaviors such as locomotion, respiration, mastication, copulation, and circulation (Delcomyn, 1980; Kristan et al., 1977). The behaviors are easily observed and quantified, and the components of the nervous systems involved in their production are usually straightforward to identify and manipulate experimentally. As a result of the work being done on several different rhythmic behaviors, general principles of nervous system organization and function are continuing to emerge (see Chapters 1, 4, 5 of this volume).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alving, B. O., 1968, Spontaneous activity in isolated somata of Aplysia pacemaker neurons, J. Gen Physiol 51:29–45.

    Article  PubMed  CAS  Google Scholar 

  • Brown, T. A., 1914, On the nature of fundamental activity of the nervous centres, together with an analysis of the conditioning of the rhythmic activity in progression and a theory of the evolution of the function in the nervous system, J. Physiol. 48:18–46.

    PubMed  CAS  Google Scholar 

  • Claiborne, B. J., and Selverston, A. I., 1984, Localization of stomatogastric IV neuron cell bodies in lobster brain, J. Comp. Physiol. 154:27–32.

    Article  Google Scholar 

  • Delcomyn, F., 1980, Neural basis of rhythmic behavior in animals, Science 210:492–498.

    Article  PubMed  CAS  Google Scholar 

  • Dickinson, P. S., and Nagy, F., 1983, Control of a central pattern generator by an identified modulatory interneurone in Crustacea. II. Induction and modification of plateau properties in pyloric neurones, J. Exp. Biol. 105:59–82.

    PubMed  CAS  Google Scholar 

  • Eisen, J. S., and Marder, E., 1982, Mechanisms underlying pattern generation in the lobster stomatogastric ganglion as determined by selective inactivation of identified neurons. III. Synaptic connections of electrically coupled pyloric neurons, J. Neurophysiol. 48:1392–1415.

    PubMed  CAS  Google Scholar 

  • Gola, M., and Selverston, A. I., 1981, Ionic requirements for bursting activity in lobster stomatogastric neurons. J. Comp. Physiol 145:191–207.

    Article  CAS  Google Scholar 

  • Hartline, D. K., and Gassie, D. V., 1979, Pattern generation in the lobster (Panulirus) stomatogastric ganglion. I. Pyloric neuron kinetics and synaptic interconnections, Biol. Cybern. 33:209–222.

    Article  PubMed  CAS  Google Scholar 

  • Hartline, D. K., and Maynard, D. M., 1975, Motor patterns in the stomatogastric ganglion of the lobster Panulirus argus, J. Exp. Biol. 62:409–420.

    Google Scholar 

  • Koester, J., and Byrne, J. H., 1980, Molluscan nerve cells: From biophysics to behavior, Cold Spring Harbor Rep.. Neurosci. 1:125–180.

    Google Scholar 

  • Kristan, W. B., Burrows, M., Eisner, N., Grillner, S., Huber, F., Jankowska, E., Pearson, K., Sears, T., and Stent, G. S., 1977, Neural control of movement, in: Function and Formation of Neural Systems (G. S. Stent, ed.), Berlin Dahlem Konferenzen, pp. 329–354.

    Google Scholar 

  • Maynard, D. M., 1972, Simpler networks, Ann. N. Y. Acad. Sci. 193:59–72.

    Article  PubMed  CAS  Google Scholar 

  • Maynard, D. M., and Dando, M. R., 1974, The structure of the stomatogastric neuromuscular system in Callinectes sapidus, Homarus americanus and Panulirus argus (Decapoda crustacea), Philos. Trans. R. Soc. London Ser. B 268:161–220.

    Article  CAS  Google Scholar 

  • Maynard, D. M., and Selverston, A. I., 1975, Organization of the stomatogastric ganglion of the spiny lobster. IV. The pyloric system, J. Comp. Physiol. 100:161–182.

    Article  Google Scholar 

  • McDougall, W., 1903, The nature of inhibitory processes within the nervous system, Brain 26:153–191.

    Article  Google Scholar 

  • Miller, J. P., and Selverston, A. I., 1979, Rapid killing of single neurons by irradiation of intracellularly injected dye, Science 206:702–704.

    Article  PubMed  CAS  Google Scholar 

  • Miller, J. P., and Selverston, A. I., 1982a, Mechanisms underlying pattern generation in the lobster stomatogastric ganglion as determined by selective inactivation of identified neurons. II. Oscillatory properties of pyloric neurons, J. Neurophysiol 48:1378–1391.

    PubMed  CAS  Google Scholar 

  • Miller, J. P., and Selverston, A. I., 1982b, Mechanisms underlying pattern generation in the lobster stomatogastric ganglion as determined by selective inactivation of identified neurons. IV. Network properties of the pyloric system, J. Neurophysiol 48:1416–1432.

    PubMed  CAS  Google Scholar 

  • Moulins, M., and Cournil, I., 1982, All or none control of the bursting properties of the pacemaker neurons of the lobster pyloric pattern generator, J. Neurobiol. 13:447–458.

    Article  PubMed  CAS  Google Scholar 

  • Nagy, F., and Dickinson, P. S., 1983, Control of a central pattern generator by an identified modulatory interneurone in crustacea. I. Modulation of the pyloric motor output, J. Exp. Biol. 105:33–58.

    PubMed  CAS  Google Scholar 

  • Robertson, R. M., and Moulins, M., 1981, Oscillatory command input to the motor pattern generators of the crustacean stomatogastric ganglion, J. Comp. Physiol. 143:453–463.

    Article  Google Scholar 

  • Russell, D. F., and Hartline, D. K., 1978, Bursting neural networks: A reexamination, Science 200:453–456.

    Article  PubMed  CAS  Google Scholar 

  • Russell, D. F., and Hartline, D. K., 1981, A multiaction synapse evoking both EPSPs and enhancement of endogenous bursting, Brain Res. 223:19–38.

    Article  PubMed  CAS  Google Scholar 

  • Russell, D. F., and Hartline, D. K., 1982, Slow active potentials and bursting motor patterns in pyloric network of the lobster, Panulirus interruptus, J. Neurophysiol. 48:914–937.

    CAS  Google Scholar 

  • Selverston, A. I., and Miller, J. P., 1980, Mechanisms underlying pattern generation in the lobster stomatogastric ganglion as determined by selective inactivation of identified neurons. I. The pyloric system, J. Neurophysiol. 44:1102–1121.

    PubMed  CAS  Google Scholar 

  • Selverston, A. I., Russell, D. F., Miller, J. P., and King, D., 1976, The stomatogastric nervous system: Structure and function of a small neural network, Prog. Neurobiol. 7:215–290.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer Science+Business Media New York

About this chapter

Cite this chapter

Miller, J.P., Selverston, A.I. (1985). Neural Mechanisms for the Production of the Lobster Pyloric Motor Pattern. In: Selverston, A.I. (eds) Model Neural Networks and Behavior. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5858-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5858-0_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-5860-3

  • Online ISBN: 978-1-4757-5858-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics