Skip to main content

Lipid Raft Proteins and Their Identification in T Lymphocytes

  • Chapter
Membrane Dynamics and Domains

Abstract

This review focuses on how membrane lipid rafts have been detected and isolated, mostly from lymphocytes, and their associated proteins identified. These proteins include transmembrane antigens/receptors, GPI-anchored proteins, cytoskeletal proteins, Src-family protein kinases, G-proteins, and other proteins involved in signal transduction. To further understand the biology of lipid rafts, new methodological approaches are needed to help characterize the raft protein component, and changes that occur in this component as a result of cell perturbation. We describe the application of new proteomic approaches to the identification and quantification of raft proteins in T-lymphocytes. Similar approaches, applied to other model cell systems, will provide valuable new insights into both cellular signal transduction and lipid raft biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aebersold, R., and Mann, M. [ 2003 ]. Mass spectrometry-based proteomics. Nature. 422: 198–207.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, R.G., and Jacobson, K. [ 2002 ]. A role for lipid shells in targeting proteins to caveolae, rafts, and other lipid domains. Science. 296: 1821–1825.

    Article  PubMed  CAS  Google Scholar 

  • Arcaro, A., Gregoire, C., Boucheron, N., Stotz, S., Palmer, E., Malissen, B., and Luescher, I.F. [ 2000 ]. Essential role of CD8 palmitoylation in CD8 coreceptor function. J Immunol. 165: 2068–2076.

    PubMed  CAS  Google Scholar 

  • Babiychuk, E.B., and Draeger, A. [ 2000 ]. Annexins in cell membrane dynamics. Ca(2+)regulated association of lipid microdomains. J Cell Biol. 150: 1113–1124.

    Article  PubMed  CAS  Google Scholar 

  • Balamuth, F., Leitenberg, D., Unternaehrer, J., Mellman, I., and Bottomly, K. [ 2001 ]. Distinct patterns of membrane microdomain partitioning in Thl and th2 cells. Immunity. 15: 729–738.

    Article  PubMed  CAS  Google Scholar 

  • Bell, A.W., Ward, M.A., Blackstock, WP., Freeman, H.N., Choudhary, J.S., Lewis, A.P, Chotai, D., Fazel, A., Gushue, J.N., Paiement, J., Paley, S., Chevet, E., Lafreniere-Roula, M., Solari, R., Thomas, D.Y., Rowley, A., and Bergeron, J.J. [ 2001 ]. Proteomics characterization of abundant Golgi membrane proteins. JBiol Chem. 276: 5152–5165.

    Article  CAS  Google Scholar 

  • Bi, K., Tanaka, Y., Coudronniere, N., Sugie, K., Hong, S., van Stipdonk, M.J., and Altman, A. [ 2001 ]. Antigen-induced translocation of PKC-theta to membrane rafts is required for T cell activation. Nat Immunol. 2: 556–563.

    Article  PubMed  CAS  Google Scholar 

  • Blagoev, B., Kratchmarova, I., Ong, S.E., Nielsen, M., Foster, L.J., and Mann, M. [ 2003 ]. A proteomics strategy to elucidate functional protein-protein interactions applied to EGF signaling. Nat Biotechnol. 21: 315–318.

    Article  PubMed  CAS  Google Scholar 

  • Blanchard, J. [ 2000 ]. Small GTPases, adhesion, cell cycle control and proliferation. Pathologie et Biologie. 48 (3): 318–327.

    PubMed  CAS  Google Scholar 

  • Blumenthal, R., Clague, M.J., Durell, S.R., and Epand, R.M. [ 2003 ]. Membrane fusion. Chem Rev. 103: 53–69.

    Article  PubMed  CAS  Google Scholar 

  • Brdicka, T., Imrich, M., Angelisova, P., Brdickova, N., Horvath, O., Spicka, J., Hilgert, I., Luskova, P., Draber, P., Novak, E, Engels, N., Wienands, J., Simeon, L., Osterreicher, J., Aguado, E., Malissen, M., Schraven, B., and Horejsi, V. [ 2002 ]. Non-T cell activation linker (NTAL): a transmembrane adaptor protein involved in immunoreceptor signaling. JExp Med. 196: 1617–1626.

    Article  CAS  Google Scholar 

  • Brdicka, T., Pavlistova, D., Leo, A., Bruyns, E., Korinek, V, Angelisova, P., Scherer, J., Shevchenko, A., Hilgert, I., Cerny, J., Drbal, K., Kuramitsu, Y., Kornacker, B., Horejsi, V, and Schraven, B. [ 2000 ]. Phosphoprotein associated with glycosphingolipid-enriched microdomains (PAG), a novel ubiquitously expressed transmembrane adaptor protein, binds the protein tyrosine kinase csk and is involved in regulation of T cell activation. JExp Med. 191: 1591–1604.

    Article  CAS  Google Scholar 

  • Brdickova, N., Brdicka, T., Andera, L., Spicka, J., Angelisova, E, Milgram, S.L., and Horejsi, V [ 2001 ]. Interaction between two adapter proteins, PAG and EBP50: a possible link between membrane rafts and actin cytoskeleton. FEBS Lett. 507: 133–136.

    Article  PubMed  CAS  Google Scholar 

  • Brodsky, E, Chen, C., Knuehl, C., Towler, M., and Wakeham, D. [ 2001 ]. Biological basket weaving: Formation and function of clathrin-coated vesicles. Annual Review of Cell 888 Developmental Biology. 12: 517–568.

    Article  Google Scholar 

  • Brown, D. [ 1994 ]. GPI-anchored proteins and detergent-resistant membrane domains. Braz J Med Biol Res. 27: 309–315.

    PubMed  CAS  Google Scholar 

  • Brown, D.A., Crise, B., and Rose, J.K. [ 1989 ]. Mechanism of membrane anchoring affects polarized expression of two proteins in MDCK cells. Science. 245: 1499–1501.

    Article  PubMed  CAS  Google Scholar 

  • Brown, D.A., and London, E. [ 1997 ]. Structure of detergent-resistant membrane domains: does phase separation occur in biological membranes? Biochem Biophys Res Commun. 240: 1–7.

    Article  PubMed  CAS  Google Scholar 

  • Brown, D.A., and London, E. [ 2000 ]. Structure and function of sphingolipid-and cholesterol-rich membrane rafts. J Biol Chem. 275: 17221–17224.

    Article  PubMed  CAS  Google Scholar 

  • Brown, D.A., and Rose, J.K. [ 1992 ]. Sorting of GPI-anchored proteins to glycolipidenriched membrane subdomains during transport to the apical cell surface. Cell. 68: 533–544.

    Article  PubMed  CAS  Google Scholar 

  • Brown, M.T., and Cooper, J.A. [ 1996 ]. Regulation, substrates and functions of src. Biochim Biophys Acta. 1287: 121–149.

    PubMed  Google Scholar 

  • Bunnell, S.C., Kapoor, V, Trible, R.P., Zhang, W, and Samelson, L.E. [ 2001 ]. Dynamic actin polymerization drives T cell receptor-induced spreading: a role for the signal transduction adaptor LAT. Immunity. 14: 315–329.

    Article  PubMed  CAS  Google Scholar 

  • Carter, W.G., and Hakomori, S. [ 1981 ]. A new cell surface, detergent-insoluble glycoprotein matrix of human and hamster fibroblasts. The role of disulfide bonds in stabilization of the matrix. JBiol Chem. 256: 6953–6960.

    CAS  Google Scholar 

  • Chawla, M., and Vishwakarma, R.A. [ 2003 ]. Alkylacylglycerolipid domain of GPI molecules of Leishmania is responsible for inhibition of PKC-mediated c-fos expression. JLipid Res. 44: 594–600.

    Article  CAS  Google Scholar 

  • Das, V., Nal, B., Roumier, A., Meas-Yedid, V, Zimmer, C., Olivo-Marin, J.C., Roux, P, Ferrier, P, Dautry-Varsat, A., and Alcover, A. [ 2002 ]. Membrane-cytoskeleton interactions during the formation of the immunological synapse and subsequent T-cell activation. Immunol Rev. 189: 123–135.

    Article  PubMed  CAS  Google Scholar 

  • Davidson, D., Bakinowski, M., Thomas, M.L., Horejsi, V, and Veillette, A. [ 2003 ]. Phosphorylation-dependent regulation of T-cell activation by PAG/Cbp, a lipid raft-associated transmembrane adaptor. Mol Cell Biol. 23: 2017–2028.

    Article  PubMed  CAS  Google Scholar 

  • Dermine, J.F., Duclos, S., Garin, J., St-Louis, F., Rea, S., Parton, R.G., and Desjardins, M. [ 2001 ]. Flotillin-l-enriched lipid raft domains accumulate on maturing phagosomes. J Biol Chem. 276: 18507–18512.

    Article  PubMed  CAS  Google Scholar 

  • Drake, D.R., 3rd, and Braciale, T.J. [ 2001 ]. Cutting edge: lipid raft integrity affects the efficiency of MHC class I tetramer binding and cell surface TCR arrangement on CD8+ T cells. Jlmmunol. 166: 7009–7013.

    CAS  Google Scholar 

  • Drevot, P., Langlet, C., Guo, X.J., Bernard, A.M., Colard, O., Chauvin, J.P., Lasserre, R., and He, H.T. [ 2002 ]. TCR signal initiation machinery is pre-assembled and activated in a subset of membrane rafts. Embo J. 21: 1899–1908.

    Article  PubMed  CAS  Google Scholar 

  • Edidin, M. [ 2001 ] Shrinking patches and slippery rafts: scales of domains in the plasma membrane. Trends Cell Biol. 11: 492–496.

    Article  PubMed  CAS  Google Scholar 

  • Edmonds, S.D., and Ostergaard, H.L. [ 2002 ]. Dynamic association of CD45 with detergent-insoluble microdomains in T lymphocytes. J Immunol. 169: 5036–5042.

    PubMed  Google Scholar 

  • Field, K.A., Holowka, D., and Baird, B. [ 1995 ]. Fc epsilon RI-mediated recruitment of p53/56lyn to detergent-resistant membrane domains accompanies cellular signaling. Proc Natl Acad Sci USA. 92: 9201–9205.

    Article  PubMed  CAS  Google Scholar 

  • Fivaz, M., Vilbois, E, Thurnheer, S., Pasquali, C., Abrami, L., Bickel, P.E., Parton, R.G., and van der Goot, F.G. [ 2002 ]. Differential sorting and fate of endocytosed GPI-anchored proteins. Embo J. 21: 3989–4000.

    Article  PubMed  CAS  Google Scholar 

  • Flint, M., Quinn, E.R., and Levy, S. [ 2001 ]. In search of hepatitis C virus receptor(s). Clin Liver Dis. 5: 873–893.

    Article  PubMed  CAS  Google Scholar 

  • Flory, M.R., Griffin, T.J., Martin, D., and Aebersold, R. [ 2002 ]. Advances in quantitative proteomics using stable isotope tags. Trends Biotechnol. 20: S23–29.

    Article  PubMed  CAS  Google Scholar 

  • Foger, N., Marhaba, R., and Zoller, M. [ 2001 ]. Involvement of CD44 in cytoskeleton rearrangement and raft reorganization in T cells. J Cell Sci. 114: 1169–1178.

    PubMed  CAS  Google Scholar 

  • Ford, T., Graham, J., and Rickwood, D. [ 1994 ]. Iodixanol: a nonionic iso-osmotic centrifugation medium for the formation of self-generated gradients. Anal Biochem. 220: 360–366.

    Article  PubMed  CAS  Google Scholar 

  • Fragoso, R., Ren, D., Zhang, X., Su, M.W., Burakoff, S.J., and Jin, Y.J. [ 2003 ]. Lipid raft distribution of CD4 depends on its palmitoylation and association with Lck, and evidence for CD4-induced lipid raft aggregation as an additional mechanism to enhance CD3 signaling. Jlmmunol. 170: 913–921.

    CAS  Google Scholar 

  • Friedrichson, T., and Kurzchalia, T.V. [ 1998 ]. Microdomains of GPI-anchored proteins in living cells revealed by crosslinking. Nature. 394: 802–805.

    Article  PubMed  CAS  Google Scholar 

  • Galbiati, F., Volonte, D., Meani, D., Milligan, G., Lublin, D.M., Lisanti, M.P., and Parenti, M. [ 1999 ]. The dually acylated NH2-terminal domain of gi1a is sufficient to target a green fluorescent protein reporter to caveolin-enriched plasma membrane domains. Palmitoylation of caveolin-1 is required for the recognition of dually acylated g-protein alpha subunits in vivo. JBiol Chem. 274: 5843–5850.

    Article  CAS  Google Scholar 

  • Gauld, S., Dal, P.J., and Cambier, J. [ 2002 ]. B cell antigen receptor signaling: Roles in cell development and disease. Science. 296: 1641–1642.

    Article  PubMed  CAS  Google Scholar 

  • Goodlett, D.R., Keller, A., Watts, J.D., Newitt, R.,Yi, E.C., Purvine, S., Eng, J.K., von Haller, P., Aebersold, R., and Kolker, E. [ 2001 ]. Differential stable isotope labeling of peptides for quantitation and de novo sequence derivation. Rapid Commun Mass Spectrom. 15: 1214–1221.

    Article  PubMed  CAS  Google Scholar 

  • Goodlett, D.R., and Yi, E.C. [ 2002 ]. Proteomics without polyacrylamide: qualitative and quantitative uses of tandem mass spectrometry in proteome analysis. Fund Integr Genomics. 2: 138–153.

    Article  CAS  Google Scholar 

  • Graham, J., Ford, T., and Rickwood, D. [ 1994 ]. The preparation of subcellular organelles from mouse liver in self-generated gradients of iodixanol. Anal Biochem. 220: 367–373.

    Article  PubMed  CAS  Google Scholar 

  • Guina, T., Purvine, S.O., Yi, E.C., Eng, J., Goodlett, D.R., Aebersold, R., and Miller, S.I. [ 2003 ]. Quantitative proteomic analysis indicates increased synthesis of a quinolone by Pseudomonas aeruginosa isolates from cystic fibrosis airways. Proc Natl Acad Sci USA. 100: 2771–2776.

    Article  PubMed  CAS  Google Scholar 

  • Guo, Z., Turner, C., and Castle, D. [ 1998 ]. Relocation of the t-SNARE SNAP-23 from lamellipodia-like cell surface projections regulates compound exocytosis in mast cells. Cell. 94: 537–548.

    Article  PubMed  CAS  Google Scholar 

  • Gygi, S.P., Rist, B., Gerber, S.A., Turecek, F., Gelb, M.H., and Aebersold, R. [ 1999 ]. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol. 17: 994–999.

    Article  PubMed  CAS  Google Scholar 

  • Gygi, S.P., Rist, B., Griffin, T.J., Eng, J., and Aebersold, R. [ 2002 ]. Proteome analysis of low-abundance proteins using multidimensional chromatography and isotope-coded affinity tags. JProteome Res. 1: 47–54.

    Article  CAS  Google Scholar 

  • Han, D.K., Eng, J., Zhou, H., and Aebersold, R. [ 2001 ]. Quantitative profiling of differentiation-induced microsomal proteins using isotope-coded affinity tags and mass spectrometry. Nat Biotechnol. 19: 946–951.

    Article  PubMed  CAS  Google Scholar 

  • Harder, T., Scheiffele, P., Verkade, P., and Simons, K. [ 1998 ]. Lipid domain structure of the plasma membrane revealed by patching of membrane components. J Cell Biol. 141: 929–942.

    Article  PubMed  CAS  Google Scholar 

  • Harris, J., Werling, D., Hope, J., Taylor, G., and Howard, C. [ 2002 ]. Caveolae and caveolin in immune cells: distribution and functions. Trends in Immunology. 23: 158–164.

    Article  PubMed  CAS  Google Scholar 

  • Heller, M., Goodlett, D.R., Watts, J.D., and Aebersold, R. [ 2000 ]. A comprehensive characterization of the T-cell antigen receptor complex composition by microcapillary liquid chromatography-tandem mass spectrometry. Electrophoresis. 21: 2180–2195.

    Article  PubMed  CAS  Google Scholar 

  • Henning, S., and Cantrell, D. [ 1998 ]. GTPases in Antigen Receptor Signalling. Current Opinion in Immunology. 10: 322–329.

    Article  PubMed  CAS  Google Scholar 

  • Hilgemann, D.W., Feng, S., and Nasuhoglu, C. [2001]. The complex and intriguing lives of PIP2 with ion channels and transporters. Sci STKE. 2001:RE19.

    Google Scholar 

  • Hiscox, S., Hallett, M.B., Morgan, B.P., and van den Berg, C.W. [ 2002 ]. GPI-anchored GFP signals Cat+ but is homogeneously distributed on the cell surface. Biochem Biophys Res Commun. 293: 714–721.

    Article  PubMed  CAS  Google Scholar 

  • Ikezawa, H. [ 2002 ]. Glycosylphosphatidylinositol (GPI)-anchored proteins. Biol Pharm Bull. 25: 409–417.

    Article  PubMed  CAS  Google Scholar 

  • Ikonen, E. [ 2001 ]. Roles of lipid rafts in membrane transport. Curr Opin Cell Biol. 13: 470–477.

    Article  PubMed  CAS  Google Scholar 

  • Itoh, K., Sakakibara, M., Yamasaki, S., Takeuchi, A., Arase, H., Miyazaki, M., Nakajima, N., Okada, M., and Saito, T. [ 2002 ]. Cutting edge: negative regulation of immune synapse formation by anchoring lipid raft to cytoskeleton through Cbp-EBP50-ERM assembly. J Immunol. 168: 541–544.

    PubMed  CAS  Google Scholar 

  • Janes, P.W., Ley, S.C., and Magee, A.I. [ 1999 ]. Aggregation of lipid rafts accompanies signaling via the T cell antigen receptor. J Cell Biol. 147: 447–461.

    Article  PubMed  CAS  Google Scholar 

  • Janes, P.W., Ley, S.C., Magee, A.I., and Kabouridis, P.S. [ 2000 ]. The role of lipid rafts in T cell antigen receptor (TCR) signalling. Semin Immunol. 12: 23–34.

    Article  PubMed  CAS  Google Scholar 

  • Janssen, E., Zhu, M., Zhang, W, and Koonpaew, S. [ 2003 ]. LAB: a new membrane-associated adaptor molecule in B cell activation. Nat Immunol. 4: 117–123.

    Article  PubMed  CAS  Google Scholar 

  • Kabouridis, P.S., Magee, A.I., and Ley, S.C. [ 1997 ]. S-acylation of LCK protein tyrosine kinase is essential for its signalling function in T lymphocytes. Embo J. 16: 4983–4998.

    Article  PubMed  CAS  Google Scholar 

  • Kamm, K., and Stull, J. [ 2001 ]. Dedicated myosin light chain kinases with diverse cellular functions. Journal of Biological Chemistry. 276: 4527–4530.

    Article  PubMed  CAS  Google Scholar 

  • Kawabuchi, M., Satomi, Y., Takao, T., Shimonishi, Y., Nada, S., Nagai, K., Tarakhovsky, A., and Okada, M. [ 2000 ]. Transmembrane phosphoprotein Cbp regulates the activities of Src-family tyrosine kinases. Nature. 404: 999–1003.

    Article  PubMed  CAS  Google Scholar 

  • Keller, A., Nesvizhskii, A.I., Kolker, E., and Aebersold, R. [ 2002 ]. Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal Chem. 74: 5383–5392.

    Article  PubMed  CAS  Google Scholar 

  • Kenworthy, A.K., Petranova, N., and Edidin, M. [ 2000 ]. High-resolution FRET microscopy of cholera toxin B-subunit and GPI-anchored proteins in cell plasma membranes. Mol Biol Cell. 11: 1645–1655.

    PubMed  CAS  Google Scholar 

  • Kosugi, A., Saitoh, S., Noda, S., Yasuda, K., Hayashi, E, Ogata, M., and Hamaoka, T. [ 1999 ]. Translocation of tyrosine-phosphorylated TCRzeta chain to glycolipid-enriched membrane domains upon T cell activation. Int Immunol. 11: 1395–1401.

    Article  PubMed  CAS  Google Scholar 

  • Kovarova, M., Tolar, E, Arudchandran, R., Draberova, L., Rivera, J., and Draber, P. [ 2001 ]. Structure-function analysis of Lyn kinase association with lipid rafts and initiation of early signaling events after Fcepsilon receptor I aggregation. Mol Cell Biol. 21: 8318–8328.

    Article  PubMed  CAS  Google Scholar 

  • Lehto, M.T., and Sharom, F.J. [ 2002 ]. PI-specific phospholipase C cleavage of a reconstituted GPI-anchored protein: modulation by the lipid bilayer. Biochemistry. 41: 1398–1408.

    Article  PubMed  CAS  Google Scholar 

  • Liang, X., Nazarian, A., Erdjument-Bromage, H., Bornmann, W, Tempst, P., and Resh, M.D. [ 2001 ]. Heterogeneous fatty acylation of Src family kinases with polyunsaturated fatty acids regulates raft localization and signal transduction. JBiol Chem. 276: 30987–30994.

    Article  CAS  Google Scholar 

  • Lisanti, M.P., Cams, l.W., Davitz, M.A., and Rodriguez-Boulan, E. [ 1989 ]. A glycophospho-lipid membrane anchor acts as an apical targeting signal in polarized epithelial cells. J Cell Biol. 109: 2145–2156.

    Article  PubMed  CAS  Google Scholar 

  • Loertscher, R., and Lavery, P. [ 2002 ]. The role of glycosyl phosphatidyl inositol (GPI)-anchored cell surface proteins in T-cell activation. Transpl Immunol. 9: 93–96.

    Article  PubMed  CAS  Google Scholar 

  • May, A.E, Misura, K.M., Whiteheart, S.W., and Weis, W.I. [ 1999 ]. Crystal structure of the amino-terminal domain of N-ethylmaleimide-sensitive fusion protein. Nat Cell Biol. 1: 175–182.

    Article  PubMed  CAS  Google Scholar 

  • McGavin, M.K., Badour, K., Hardy, L.A., Kubiseski, T.J., Zhang, J., and Siminovitch, K.A. [ 2001 ]. The intersectin 2 adaptor links Wiskott Aldrich Syndrome protein (WASp)mediated actin polymerization to T cell antigen receptor endocytosis. J Exp Med. 194: 1777–1787.

    Article  PubMed  CAS  Google Scholar 

  • Melkonian, K.A., Ostermeyer, A.G., Chen, J.Z., Roth, M.G., and Brown, D.A. [ 1999 ]. Role of lipid modifications in targeting proteins to detergent-resistant membrane rafts. Many raft proteins are acylated, while few are prenylated. JBiol Chem. 274: 3910–3917.

    Article  CAS  Google Scholar 

  • Miura, Y., Hanada, K., and Jones, T.L. [ 2001 ]. G(s) signaling is intact after disruption of lipid rafts. Biochemistry. 40: 15418–15423.

    Article  PubMed  CAS  Google Scholar 

  • Mo, W, and Karger, B.L. [ 2002 ]. Analytical aspects of mass spectrometry and proteomics. Curr Opin Chem Biol. 6: 666–675.

    Article  PubMed  CAS  Google Scholar 

  • Moffett, S., Brown, D.A., and Linder, M.E. [ 2000 ]. Lipid-dependent targeting of G proteins into rafts. JBiol Chem. 275: 2191–2198.

    Article  CAS  Google Scholar 

  • Montixi, C., Langlet, C., Bernard, A.M., Thimonier, J., Dubois, C., Wurbel, M.A., Chauvin, J.P., Pierres, M., and He, H.T. [ 1998 ]. Engagement of T cell receptor triggers its recruitment to low-density detergent-insoluble membrane domains. Embo J. 17: 5334–5348.

    Article  PubMed  CAS  Google Scholar 

  • Moran, M., and Miceli, M.C. [ 1998 ] Engagement of GPI-linked CD48 contributes to TCR signals and cytoskeletal reorganization: a role for lipid rafts in T cell activation. Immunity. 9: 787–796.

    Article  PubMed  CAS  Google Scholar 

  • Morris, A., and Malbon, C. [ 1999 ]. Physiological regulation of G protein-linked signaling. Physiological Reviews. 79: 1373–1430.

    PubMed  CAS  Google Scholar 

  • Mukheijee, S., and Maxfield, F.R. [ 2000 ]. Role of membrane organization and membrane domains in endocytic lipid trafficking. Traffic. 1: 203–211.

    Article  Google Scholar 

  • Mumby, S.M. [ 1997 ]. Reversible palmitoylation of signaling proteins. Curr Opin Cell Biol. 9: 148–154.

    Article  PubMed  CAS  Google Scholar 

  • Muniz, M., and Riezman, H. [ 2000 ]. Intracellular transport of GPI-anchored proteins. Embo J. 19: 10–15.

    Article  PubMed  CAS  Google Scholar 

  • Nebl, T., Pestonjamasp, K.N., Leszyk, J.D., Crowley, J.L., Oh, S.W., and Luna, E.J. [ 2002 ]. Proteomic analysis of a detergent-resistant membrane skeleton from neutrophil plasma membranes. JBiol Chem. 277: 43399–43409.

    Article  CAS  Google Scholar 

  • Nesvizhskii, A.I., Keller, A., Kolker, E., and Aebersold, R. [2003]. A statistical model for identifying proteins by tandem mass spectrometry. Anal. Chem., in press.

    Google Scholar 

  • Neves, S., Ram, P., and Iyengar, R. [ 2002 ]. G protein pathways. Science. 296: 1636–1639.

    Article  PubMed  CAS  Google Scholar 

  • Nichols, B.J., Kenworthy, A.K., Polishchuk, R.S., Lodge, R., Roberts, T.H., Hirschberg, K., Phair, R.D., and Lippincott-Schwartz, J. [ 2001 ]. Rapid cycling of lipid raft markers between the cell surface and Golgi complex. J Cell Biol. 153: 529–541.

    Article  PubMed  CAS  Google Scholar 

  • Niv, H., Gutman, O., Kloog, Y., and Henis, Y.I. [ 2002 ]. Activated K-Ras and H-Ras display different interactions with saturable nonraft sites at the surface of live cells. J Cell Biol. 157: 865–872.

    Article  PubMed  CAS  Google Scholar 

  • Ong, S.E., Blagoev, B., Kratchmarova, I., Kristensen, D.B., Steen, H., Pandey, A., and Mann, M. [ 2002 ]. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics. 1: 376–386.

    Article  PubMed  CAS  Google Scholar 

  • Patterson, S.D., and Aebersold, R.H. [2003]. Proteomics: the first decade and beyond. Nat Genet. 33 Suppl:311–323.

    Google Scholar 

  • Patton, W.F. [ 2002 ]. Detection technologies in proteome analysis. J Chromatogr B Analyt Technol Biomed Life Sci. 771: 3–31.

    Article  PubMed  CAS  Google Scholar 

  • Pike, L.J., Han, X., Chung, K.N., and Gross, R.W. [ 2002 ]. Lipid rafts are enriched in arachidonic acid and plasmenylethanolamine and their composition is independent of caveolin-1 expression: a quantitative electrospray ionization/mass spectrometric analysis. Biochemistry. 41: 2075–2088.

    Article  PubMed  CAS  Google Scholar 

  • Pike, L.J., and Miller, J.M. [ 1998 ]. Cholesterol depletion delocalizes phosphatidylinositol bisphosphate and inhibits hormone-stimulated phosphatidylinositol turnover. J Biol Chem. 273: 22298–22304.

    Article  PubMed  CAS  Google Scholar 

  • Pollard, T., and Beltzner, C. [ 2002 ]. Structure and function of the Arp2/3 complex. Current Opinion in Structural Biology, 2002 Dec. 12: 768–774.

    CAS  Google Scholar 

  • Pralle, A., Keller, P., Florin, E.L., Simons, K., and Horber, J.K. [ 2000 ]. Sphingolipidcholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. J Cell Biol. 148: 997–1008.

    Article  PubMed  CAS  Google Scholar 

  • Prior, I.A., and Hancock, J.F. [ 2001 ]. Compartmentalization of Ras proteins. J Cell Sci. 114: 1603–1608.

    PubMed  CAS  Google Scholar 

  • Prior, I.A., Harding, A., Yan, J., Sluimer, J., Parton, R.G., and Hancock, J.F. [ 2001 ]. GTPdependent segregation of H-ras from lipid rafts is required for biological activity. Nat Cell Biol. 3: 368–375.

    Article  PubMed  CAS  Google Scholar 

  • Puri, V, Watanabe, R., Dominguez, M., Sun, X., Wheatley, C.L., Marks, D.L., and Pagano, R.E. [ 1999 ]. Cholesterol modulates membrane traffic along the endocytic pathway in sphingolipid-storage diseases. Nat Cell Biol. 1: 386–388.

    Article  PubMed  CAS  Google Scholar 

  • Ranish, J.A., Yi, E.C., Leslie, D.M., Purvine, S.O., Goodlett, D.R., Eng, J., and Aebersold, R. [ 2003 ]. The study of macromolecular complexes by quantitative proteomics. Nat Genet. 33: 349–355.

    Article  PubMed  CAS  Google Scholar 

  • Razani, B., Woodman, S., and Lisanti, M. [ 2002 ]. Caveolae: From cell biology to animal physiology. Pharmacological Reviews. 54: 431–467.

    Article  PubMed  CAS  Google Scholar 

  • Ridley, A.J. [ 2001 ]. Rho family proteins: coordinating cell responses. Trends Cell Biol. 11: 471–477.

    Article  PubMed  CAS  Google Scholar 

  • Rodgers, W, and Zavzavadjian, J. [ 2001 ]. Glycolipid-enriched membrane domains are assembled into membrane patches by associating with the actin cytoskeleton. Exp Cell Res. 267: 173–183.

    Article  PubMed  CAS  Google Scholar 

  • Roy, S., Luetterforst, R., Harding, A., Apolloni, A., Etheridge, M., Stang, E., Rolls, B., Hancock, J.F., and Parton, R.G. [ 1999 ]. Dominant-negative caveolin inhibits H-Ras function by disrupting cholesterol-rich plasma membrane domains. Nat Cell Biol. 1: 98–105.

    Article  PubMed  CAS  Google Scholar 

  • Rozelle, A.L., Machesky, L.M., Yamamoto, M., Driessens, M.H., Insall, R.H., Roth, M.G., Luby-Phelps, K., Marriott, G., Hall, A., and Yin, H.L. [ 2000 ]. Phosphatidylinositol 4,5-bisphosphate induces actin-based movement of raft-enriched vesicles through WASP-Arp2/3. Curr Biol. 10: 311–320.

    Article  PubMed  CAS  Google Scholar 

  • Samelson, L.E., Bunnell, S.C., Trible, R.P., Yamazaki, T., and Zhang, W. [ 1999 ]. Studies on the adapter molecule LAT. Cold Spring Harb Symp Quant Biol. 64:259–263.

    Google Scholar 

  • Schlessinger, J. [2000]. New roles for Src kinases in control of cell survival and angiogenesis. Cell. 100:293–296.

    Google Scholar 

  • Shenoy-Scaria, A.M., Gauen, L.K., Kwong, J., Shaw, A.S., and Lublin, D.M. [ 1993 ]. Palmitylation of an amino-terminal cysteine motif of protein tyrosine kinases p561ck and p59fyn mediates interaction with glycosyl-phosphatidylinositol-anchored proteins. Mol Cell Biol. 13: 6385–6392.

    PubMed  CAS  Google Scholar 

  • Shevchenko, A., Chernushevich, I., Ens, W, Standing, K.G., Thomson, B., Wilm, M., and Maim, M. [ 1997 ]. Rapid `de novo’ peptide sequencing by a combination of nanoelectrospray, isotopic labeling and a quadrupole/time-of-flight mass spectrometer. Rapid Commun Mass Spectrom. 11: 1015–1024.

    Article  PubMed  CAS  Google Scholar 

  • Shields, J.M., Pruitt, K., McFall, A., Shaub, A., and Der, C.J. [ 2000 ]. Understanding Ras: `it ain’t over ‘til it’s over’. Trends Cell Biol. 10: 147–154.

    Article  PubMed  CAS  Google Scholar 

  • Shiio, Y., Donohoe, S., Yi, E.C., Goodlett, D.R., Aebersold, R., and Eisenman, R.N. [ 2002 ]. Quantitative proteomic analysis of Myc oncoprotein function. Embo J. 21: 5088–5096.

    Article  PubMed  CAS  Google Scholar 

  • Silvie, O., Rubinstein, E., Franetich, J.F., Prenant, M., Belnoue, E., Renia, L., Hannoun, L., Eling, W, Levy, S., Boucheix, C., and Mazier, D. [ 2003 ]. Hepatocyte CD81 is required for Plasmodium falciparum and Plasmodium yoelii sporozoite infectivity. Nat Med. 9: 93–96.

    Article  PubMed  CAS  Google Scholar 

  • Simons, K., and Ikonen, E. [ 1997 ]. Functional rafts in cell membranes. Nature. 387: 569–572.

    Article  PubMed  CAS  Google Scholar 

  • Simons, K., and Toomre, D. [ 2000 ]. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 1: 31–39.

    Article  PubMed  CAS  Google Scholar 

  • Simons, K., and van Meer, G. [ 1988 ]. Lipid sorting in epithelial cells. Biochemistry. 27: 6197–6202.

    Article  PubMed  CAS  Google Scholar 

  • Smart, E.J., Graf, G.A., McNiven, M.A., Sessa, W.C., Engelman, J.A., Scherer, P.E., Okamoto, T., and Lisanti, M.P. [ 1999 ]. Caveolins, liquid-ordered domains, and signal transduction. Mol Cell Biol. 19: 7289–7304.

    PubMed  CAS  Google Scholar 

  • Stewart, II, Thomson, T., and Figeys, D. [2001]. 180 labeling: a tool for proteomics. Rapid Commun Mass Spectrom. 15:2456–2465.

    Google Scholar 

  • Stuermer, C.A., Lang, D.M., Kirsch, E, Wiechers, M., Deininger, S.O., and Plattner, H. [ 2001 ]. Glycosylphosphatidyl inositol-anchored proteins and Fyn kinase assemble in noncaveolar plasma membrane microdomains defined by reggie-1 and -2. Mol Biol Cell. 12: 3031–3045.

    PubMed  CAS  Google Scholar 

  • Stulnig, T.M., Huber, J., Leitinger, N., Imre, E.M., Angelisova, E, Nowotny, P., and Waldhausl, W. [ 2001 ]. Polyunsaturated eicosapentaenoic acid displaces proteins from membrane rafts by altering raft lipid composition. JBiol Chem. 276: 37335–37340.

    Article  CAS  Google Scholar 

  • Superti-Furga, G. [ 1995 ]. Regulation of the Src protein tyrosine kinase. FEBS Lett. 369: 62–66.

    Article  PubMed  CAS  Google Scholar 

  • Takuwa, N., and Takuwa, Y. [ 2001 ]. Regulation of cell cycle molecules by the Ras effector system. [2001] Molecular 888 Cellular Endocrinology. 177 (1–2): 25–33.

    Article  CAS  Google Scholar 

  • Tao, W.A., and Aebersold, R. [ 2003 ]. Advances in quantitative proteomics via stable isotope tagging and mass spectrometry. Curr Opin Biotechnol. 14: 110–118.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, J.L., Holowka, D., Baird, B., and Webb, W.W. [ 1994 ]. Large-scale co-aggregation of

    Google Scholar 

  • fluorescent lipid probes with cell surface proteins. J Cell Biol. 125:795–802.

    Google Scholar 

  • Thomas, M.L. [ 1999 ]. The regulation of antigen-receptor signaling by protein tyrosine phosphatases: a hole in the story. Curr Opin Immunol. 11: 270–276.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, S.M., and Brugge, J.S. [ 1997 ]. Cellular functions regulated by Src family kinases. Annu Rev Cell Dey Biol. 13: 513–609.

    Article  CAS  Google Scholar 

  • Tseng, S.Y., and Dustin, M.L. [ 2002 ]. T-cell activation: a multidimensional signaling network. Curr Opin Cell Biol. 14: 575–580.

    Article  PubMed  CAS  Google Scholar 

  • Berg, C.W., Cinek, T., Hallett, M.B., Horejsi, V, and Morgan, B.P. [ 1995 ]. Exogenous glycosyl phosphatidylinositol-anchored CD59 associates with kinases in membrane clusters on U937 cells and becomes Ca(2+)-signaling competent. J Cell Biol. 131: 669–677.

    Article  PubMed  Google Scholar 

  • Varma, R., and Mayor, S. [ 1998 ]. GPI-anchored proteins are organized in submicron domains at the cell surface. Nature. 394: 798–801.

    Article  PubMed  CAS  Google Scholar 

  • Haller, P.D., Donohoe, S., Goodlett, D.R., Aebersold, R., and Watts, J.D. [ 2001 ]. Mass spectrometric characterization of proteins extracted from Jurkat T cell detergent-resistant membrane domains. Proteomics. 1: 1010–1021.

    Article  Google Scholar 

  • Haller, ED., Yi, E., Donohoe, S., Vaughn, K., Keller, A., Nesvizhskii, A.I., Eng, J., Li, X., Goodlett, D.R., Aebersold, R., and Watts, J.D. [ 2003 ]. Evaluation of ICAT and tandem mass spectrometry methodologies for large scale protein analysis and the application of statistical modeling approaches for data interpretation. Submitted.

    Google Scholar 

  • Waheed, A.A., and Jones, T.L. [ 2002 ]. Hsp90 interactions and acylation target the G protein Galpha 12 but not Galpha 13 to lipid rafts. JBiol Chem. 277: 32409–32412.

    Article  CAS  Google Scholar 

  • Wang, S., and Regnier, F.E. [ 2001 ]. Proteomics based on selecting and quantifying cysteine containing peptides by covalent chromatography. J Chromatogr A. 924: 345–357.

    Article  PubMed  CAS  Google Scholar 

  • Wang, X.M., Djordjevic, J.T., Bender, V., and Manolios, N. [ 2002 ]. T cell antigen receptor (TCR) transmembrane peptides colocalize with TCR, not lipid rafts, in surface membranes. Cell Immunol. 215: 12–19.

    Article  PubMed  CAS  Google Scholar 

  • Wedegaertner, P.B., Wilson, P.T., and Bourne, H.R. [ 1995 ]. Lipid modifications of trimeric G proteins. J Biol Chem. 270: 503–506.

    Article  PubMed  CAS  Google Scholar 

  • Wherlock, M., and Mellor, H. [ 2002 ]. The Rho GTPase family: a Racs to Wrchs story. J Cell Sci. 115: 239–240.

    PubMed  CAS  Google Scholar 

  • Williams, J.C., Wierenga, R.K., and Saraste, M. [ 1998 ]. Insights into Src kinase functions: structural comparisons. Trends Biochem Sci. 23: 179–184.

    Article  PubMed  CAS  Google Scholar 

  • Wu, M., Fan, J., Gunning, W, and Ratnam, M. [ 1997 ]. Clustering of GPI-anchored folate receptor independent of both cross-linking and association with caveolin. J Membr Biol. 159: 137–147.

    Article  PubMed  CAS  Google Scholar 

  • Xavier, R., Brennan, T., Li, Q., McCormack, C., and Seed, B. [ 1998 ]. Membrane compartmentation is required for efficient T cell activation. Immunity. 8: 723–732.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, W, Trible, R.P., and Samelson, L.E. [ 1998 ]. LAT palmitoylation: its essential role in membrane microdomain targeting and tyrosine phosphorylation during T cell activation. Immunity. 9: 239–246.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, W, Trible, R.P., Zhu, M., Liu, S.K., McGlade, C.J., and Samelson, L.E. [ 2000 ]. Association of Grb2, Gads, and phospholipase C-gamma 1 with phosphorylated LAT tyrosine residues. Effect of LAT tyrosine mutations on T cell angigen receptor-mediated signaling. J Biol Chem. 275: 23355–23361.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, H., Ranish, J.A., Watts, J.D., and Aebersold, R. [ 2002 ]. Quantitative proteome analysis by solid-phase isotope tagging and mass spectrometry. Nat Biotechnol. 20: 512–515.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wollscheid, B. et al. (2004). Lipid Raft Proteins and Their Identification in T Lymphocytes. In: Quinn, P.J. (eds) Membrane Dynamics and Domains. Subcellular Biochemistry, vol 37. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5806-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5806-1_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3447-5

  • Online ISBN: 978-1-4757-5806-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics